This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.
Background The Primary screwworm, Cochliomyia hominivorax (Coquerel), is a serious pest feeding on living flesh of any warm-blooded animal, including humans. It was eradicated from the United States in the early 1980s using the sterile male technique. However, it was recently detected in populations of wild deer and pets in the Florida Keys of the US. For monitoring purposes, screwworm flies are normally trapped using attractant bait with liver. However, there has been little effort to develop an efficient monitoring system for detection of screwworm flies using a specific synthetic attractant blend. Several studies have shown that odors from animal wound fluids attract screwworm adults, particularly gravid females. Bacteria associated with animal wounds have been identified that act as a major source for this attraction. To understand what volatiles attract screwworms we inoculated bovine blood with previously identified bacteria. We identified volatile chemicals released from the inoculated blood and other selected media over time and assessed the effect of those chemicals on behavioral activity of adult screwworm flies. Methodology/Principal findings A total of 7 volatile compounds were collected from bacteria incubated in either broth or blood using solid-phase microextraction, and their chemical structures were identified by their characteristic mass spectrum fragments and confirmed by retention times in comparison to those of synthetic standards via gas chromatograph combined mass spectrometry analyses. Five major volatiles including dimethyl disulfide, dimethyl trisulfide, phenol, p-cresol and indole were detected from a mixture of 5 bacteria incubated in blood. The ratios of volatiles released differed among different incubation media, time and individual bacteria. A synthetic mixture containing the five compounds was demonstrated to be attractive to adult screwworm flies both in laboratory assays and field trapping trials. Conclusions/Significance The results obtained from this study may assist in developing an efficient trapping system using the identified attractant blend to detect the infestation of primary screwworms. This is also the first study to explore the complex systems in volatile release profiles from 5 bacteria isolated from screwworm-infested animal wounds that are incubated with different media and incubation time, as well as individual and multi-species bacterial communities.
There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.
Abstract Soil archives preserve a snapshot of soils from a specific time and location, allowing researchers to re‐evaluate soils of the past in the context of the present for an improved understanding of long‐term soil change. To date, the extent of soil archive use in the peer‐reviewed literature is poorly inventoried. Here, we document the characteristics and distribution of global soil archive use, as found in 245 publications, following an exhaustive search of English language journals. Soil archive use has increased substantially since 1980, reaching 59 publications between 2016 and 2020. The age of soil archives across the compilation ranged from 5 to 160 yr, with mean and median archive ages of 48 and 37 yr, respectively. Publications using soil archives originated mostly from countries in the northern hemisphere, with the top five reporting countries including the United States (61), United Kingdom (52), New Zealand (21), Canada (18), and China (14). Land uses associated with soil archive publications were dominated by agroecosystems, specifically land planted to annual crops. Forty‐seven percent of investigations focused on changes in soil C, N, or organic matter, whereas investigations of other subjects did not exceed 20% each. The compilation is publicly available online. As demands on soils increase, archives will serve as an invaluable tool for understanding long‐term soil change in the Anthropocene era. Multiregional coordination and increased investment in curation and retention of soil archives are recommended to preserve these irreplaceable resources.
Soil microorganisms are important for maintaining soil health, decomposing organic matter, and recycling nutrients in pasture systems. However, the impact of long-term conservation pasture management on soil microbial communities remains unclear. Therefore, soil microbiome responses to conservation pasture management is an important component of soil health, especially in the largest agricultural land-use in the US. The aim of this study was to identify soil microbiome community differences following 13-years of pasture management (hayed (no cattle), continuously grazed, rotationally grazed with a fenced, un-grazed and unfertilized buffer strip, and a control (no poultry litter or cattle manure inputs)). Since 2004, all pastures (excluding the control) received annual poultry litter at a rate of 5.6 Mg ha-1. Soil samples were collected at a 0-15 cm depth from 2016-2017 either pre or post poultry litter applications, and bacterial communities were characterized using Illumina 16S rRNA gene amplicon sequencing. Overall, pasture management influenced soil microbial community structure, and effects were different by year (P < 0.05). Soils receiving no poultry litter or cattle manure had the lowest richness (Chao). Continuously grazed systems had greater (P < 0.05) soil community richness, which corresponded with greater soil pH and nutrients. Consequently, continuously grazed systems may increase soil diversity, owing to continuous nutrient-rich manure deposition; however, this management strategy may adversely affect aboveground plant communities and water quality. These results suggest conservation pasture management (e.g., rotationally grazed systems) may not improve microbial diversity, albeit, buffer strips were reduced nutrients and bacterial movement as evident by low diversity and fertility in these areas compared to areas with manure or poultry litter inputs. Overall, animal inputs (litter or manure) increased soil microbiome diversity and may be a mechanism for improved soil health.
Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.S) Food and Drug Administration along with the U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial resistant bacteria in retail meats, humans, and food animals since the mid 1990’s. NARMS is currently exploring an integrated One Health monitoring model recognizing that human, animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. Environmental Protection Agency has led an interagency NARMS environmental working group (EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and national scales. The NARMS EWG divided the development of the environmental monitoring effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, (iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data management/analytics/metadata plans. For each of these areas, the consensus among the scientific community and literature was reviewed and carefully considered prior to the development of this environmental monitoring program. The data produced from the SWAM effort will help develop robust surface water monitoring programs with the goal of assessing public health risks associated with AMR pathogens in surface water (e.g., recreational water exposures), provide a comprehensive picture of how resistant strains are related spatially and temporally within a watershed, and help assess how anthropogenic drivers and intervention strategies impact the transmission of AMR within human, animal, and environmental systems.
Developing effective and sensitive detection methods for antimicrobial resistant Salmonella enterica from surface water is a goal of the National Antimicrobial Resistance Monitoring System (NARMS). There are no specified methods for recovery of S. enterica in surface waters in the U.S. A multi-laboratory evaluation of four methods - bulk water enrichment (BW), vertical Modified Moore Swab (VMMS), modified Standard Method 9260.B2 (SM), and dead-end ultrafiltration (DEUF) - was undertaken to recover S. enterica from surface water. In Phase 1, one-liter volumes of water were collected from the same site on five different dates. Water was shipped and analyzed at four different laboratory locations (A, B, C, and D) for recovery of 1) inoculated fluorescent S. Typhimurium strain (ca. 30 CFU/L) and 2) Salmonella present in the water sampled. At each location, BW, VMMS, or SM recovery was performed on five separate 1 L water samples. Twenty 1 L water samples were subjected to each recovery method, and overall, sixty 1 L samples were assayed for Salmonella. Inoculated, fluorescent Salmonella Typhimurium and environmental Salmonella spp. were recovered from 65 % (39/60) and 45 % (27/60) of water samples, respectively. BW, VMMS, and SM recovered fluorescent S. Typhimurium from 60 %, 60 %, and 75 % of inoculated samples, respectively. Analysis by Chi-squared test determined laboratory location had a significant (p < 0.05) effect on fluorescent S. Typhimurium recovery compared to method or date of water collection. In Phase 2, recovery of inoculated fluorescent S. Typhimurium from 1 L samples by SM and DEUF was compared at laboratory locations B and D. SM and DEUF recovered fluorescent S. Typhimurium from 100 % (20/20) and 95 % (19/20) of inoculated water samples, respectively; laboratory location (p > 0.05) did not affect Salmonella recovery. Uniform laboratory methodology and training should be prioritized in conducting Salmonella recovery from surface water in laboratories.
Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates (n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates (n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters.
Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.