Abstract We present new insights for the characterization of the petroleum system evolution in North Africa based on a review of the stratigraphic architecture description of some selected North African Palaeozoic basins. During Palaeozoic time, the Gondwana platform was divided into sub-basins bounded by structural highs. Most of the highs were inherited from north–south and SW–NE Pan-African crustal faults which were reactivated during the Palaeozoic and later, in the Austrian and Alpine tectonic phases. We studied the stratigraphic architecture of the Palaeozoic succession around four main highs showing a clear tectonic activity during the Palaeozoic sedimentation. The Gargaff Arch, in Libya, is a major SW–NE broad anticline which slowly grew up during the Cambrian and Ordovician and stopped rising during the Silurian. The activity resumed during Late Silurian and early Devonian and during the Late Devonian. The Tihemboka High is a north–south anticline in between Libya and Algeria. The uplift started during the Cambro-Ordovician then stopped during most of the Silurian. The activity resumed during the Late Silurian and continued until the Lower Carboniferous. The Ahara High, separating the Illizi and Berkine basins in Algeria, has continuously grown during the Cambro-Ordovician, stopped rising during the Silurian, and grew again continuously during the Devonian. The Bled El-Mass High is a part of the Azzel-Matti Ridge separating the Ahnet and Reggane basins in Algeria. The high mostly rose during the Cambro-Ordovician then subsided relatively less quickly than the surrounding basins during the Silurian and Devonian. The uplift timing and chronology of each palaeohigh partly controlled the petroleum systems of the surrounding basins. Topographic lows favoured the occurrence of anoxic conditions and the preservation of Lower Silurian and Frasnian source rocks. Complex progressive unconformities developed around the palaeohighs form potential complex tectonostratigraphic traps. Finally, hydrocarbons could have been trapped around the highs during pre-Hercynian times, preserving reservoir porosity from early silicification. Mixed stratigraphic–structural plays could then be present today around the highs.
The Lower Cretaceous Upper Mannville Formation in West- Central Alberta has been intensively penetrated by wells targeting deeper reservoirs during the last decades. Production and well log data in this area suggest that significant volumes of gas are still present in both conventional and tight reservoirs of this formation.The Upper Mannville reservoirs in West-Central Alberta consist of fluvial sandstones filling incised valleys. The valley infills are made up of arkosic sandstones with a complex mineralogy. The matrix of these sandstones is made up of various amounts of quartz, feldspars, clay minerals and rock fragments. They were subjected to a complex diagenetic history and the resulting paragenesis influenced the present reservoir properties. Consequently, heterogeneities in the petrophysical properties result in significant exploration risks and production issues.We present in this paper results of a diagenetic study, performed within a well constrained stratigraphic framework, that aims at understanding the impact of mineralogy and diagenesis on reservoir quality evolution. Seventy one core samples from eight wells were collected to perform a petrographic analysis, and to propose a paragenetic sequence. Four main diagenetic events were identified that occurred during burial:– clay coating around the grains;– compaction/dissolution of matrix grains;– quartz and feldspars dissolution that initiated smectite-illite transformation and kaolinisation;– carbonate cementation in the remaining pore space.Clay minerals content and carbonate cementation are the main factors that altered the reservoir quality of these sandstones. The Smectite-Illite transformation was initiated after potassium was released in the formation fluids due to K-feldspars dissolution. This transformation proportionally increased with temperature during burial. Carbonate cementation occured during the uplift phase of the basin, intensively plugging the pore space where the clay content is reduced.Additional SEM and XRD analyses allowed characterizing and quantifying more accurately the different mineralogical phases occluding the porous network. The characterization of both mineralogy and petrophysical properties gives useful keys to locate the diagenetic phases laterally and vertically, and to predict the petrophysical properties distribution.
Abstract This article is a first attempt of combining sedimentological analysis and geochemical systematics of the Alveolina Limestone Formation as a tool to identify the major stratigraphic surfaces, and to improve the sequence stratigraphy interpretation. This formation is Early Eocene in age and crops out in several well-exposed cliffs in the Serraduy – Roda de Isabena area (Graus-Tremp basin, NE Spain). Within this succession, nineteen carbonate and siliciclastic facies have been identified and grouped in environmental facies associations (based on their vertical stacking and lateral relationships): 1) coastal plain; 2) clastic deltaic complex; 3) shallow carbonate inner-ramp; 4) mid-ramp; 5) outer-ramp; 6) reefal facies. The depositional architectures studied in the Serraduy area can be directly assessed on the field, and a 3D reconstruction is proposed. This enables us to build a synthetic depositional model and to identify five small-scale T/R cycles, bounded by different kinds of sedimentary discontinuities : angular unconformity, firmground, erosional surface… In parallel, geochemical analyses (C and O isotopes, major, minor and trace elements) were carried out to help at hierarchizing the cycles and the boundaries previously identified. Four of them may be considered as major stratigraphic surfaces, corresponding either to regional-scale angular unconformities, or to exposure surfaces. The latter are characterized by a selective dissolution, a slight but sharp decrease in δ13CV-PDB and in Mg, Fe and Sr contents below the surface. The absence of typical sedimentary criteria of exposure (with the exception of these geochemical signatures) may be explained by short-term exposure, an arid to semi-arid climate, and a dominant low-magnesian calcite original mineralogy, precluding the development and the preservation of widespread vadose diagenetic products. A new sequence stratigraphy model for the Alveolina Limestone Fm is finally proposed and discussed.