Abstract. This study compares the performance of the Community Land Models (CLM4.5 and CLM5) against tower and ground measurements from a tropical montane rainforest in Costa Rica. The study site receives over 4000 mm of mean annual precipitation and has high daily levels of relative humidity. The measurement tower is equipped with eddy-covariance and vertical profile systems able to measure various micrometeorological variables, particularly in wet and complex terrain. In this work, results from point-scale simulations for both CLM4.5 and its updated version (CLM5) are compared to observed canopy flux and micrometeorological data. Both models failed to capture the effects of frequent rainfall events and mountainous topography on the variables of interest (temperatures, leaf wetness, and fluxes). Overall, CLM5 alleviates some errors in CLM4.5, but CLM5 still cannot precisely simulate a number of canopy processes for this forest. Soil, air, and canopy temperatures, as well as leaf wetness, remain too sensitive to incoming solar radiation rates despite updates to the model. As a result, daytime vapor flux and carbon flux are overestimated, and modeled temperature differences between day and night are higher than those observed. Slope effects appear in the measured average diurnal variations of surface albedo and carbon flux, but CLM5 cannot simulate these features. This study suggests that both CLMs still require further improvements concerning energy partitioning processes, such as leaf wetness process, photosynthesis model, and aerodynamic resistance model for wet and mountainous regions.
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave—where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Microbial communities are found throughout the biosphere, from human guts to glaciers, from soil to activated sludge. Understanding the statistical properties of such diverse communities can pave the way to elucidate the common mechanisms ...Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches—which combine phylogenetic relationships between species with community ecology—have the potential to disentangle such forces but are often ...
Abstract. Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.
Abstract Depending on severity, wildfire alters stand biomass, tree species distribution, and age, which may modify stand transpiration ( E t ) and the amount of water available to other parts of the hydrologic cycle. Our objective was to determine how wildfire severity affected E t in mixed pine/oak ( Pinus taeda L./ Quercus stellata Wangehn., Quercus marilandica Muenchh.) stands in the Lost Pines eco‐region (Bastrop, TX, USA). Transpiration was estimated for mature pines and oaks at unburned and moderately burned sites and oak resprouts and pine saplings at a severely burned plot. On average, mature pines had 36% greater sap flux rates ( J s ) than mature oaks in the unburned and moderately burned stands. Under low moisture stress, regenerating pines had greater J s than resprouting oaks, but J s quickly decreased as soil moisture declined. By contrast, mature pines were unaffected by dry periods. Pines contributed most to E t at the unburned and moderate stands. Conversely, oak E t dominated the severely burned stand, contributing over 95%. Transpiration was greatest at the moderately burned stand (2.02 mm day −1 ), followed by the unburned (1.44 mm day −1 ), and the severely burned stands (0.46 mm day −1 ). Despite greater J s in resprouts and saplings, reductions in total sapwood area resulted in lower stand‐level daily E t at the severe site. Although severe fire decreased stand transpiration through reductions in vegetation density, individual oak resprouts appear to thrive, undeterred by high vapour pressure deficit. Without pine planting, oaks will likely dominate severely burned stands that could result in shifts to local hydrology and microclimate.
Abstract This study updates the multi‐layered Community Land Model (CLM‐ml) for hillslopes and compares predictions from against observations collected in tropical montane rainforest, Costa Rica. Modifications are made in order to capture a wider array of vertical leaf area distributions, predict CO 2 profiles, account for soil respiration, and adjust wind forcings for difficult topographic settings. Test results indicate that the modified multi‐layer CLM model can successfully replicate the shape of various micrometeorological profiles (humidity, CO 2 , temperature, and wind speed) under the canopy. In the single‐layer models (CLM4.5 and CLM5), excessive day‐to‐night differences in leaf temperature and leaf wetness were originally noted, but CLM‐ml significantly improved these issues, decreasing the amplitudes of diurnal cycles by 67% and 47%. Sub‐canopy considerations, such as canopy shapes and turbulent transfer parameters, also played a significant role in model performance. More importantly, unlike single layer models, the results that CLM‐ml produces can be compared to variables measured within the canopy to provide far more detailed diagnostic information. Further observations and model developments, aimed at reflecting surface heterogeneity, will be necessary to adequately capture the complexity and the features of the tropical montane rainforest.
Abstract Montane ecosystems are known for their high numbers of endemic species, unique climate conditions, and wide variety of ecosystem services such as water supply and carbon storage. Although many ecohydrological and climatic studies of montane environments have been carried out in temperate and boreal regions, few have been done in Neotropical regions. Hence, the objective of this review is to synthesize the existing literature on the main factors (biotic and abiotic) that influence vegetation distribution, functional traits, and ecohydrological processes and feedbacks in tropical montane ecosystems and to identify key knowledge gaps. Most of the literature used includes work conducted in Neotropical montane rainforests, cloud forests, and grass/scrublands (e.g., páramos , punas , and campos de altitude/rupestres ). Fog is a major climatic attribute in tropical montane habitats. We found that fog regimes (frequency and intensity of fog events) influence both water inputs (i.e., canopy interception and foliar water uptake) and outputs (evapotranspiration) and represent an important driver of local species composition, dominance of plant functional types, and ecological functioning. The stability and conservation of tropical montane ecosystems depends on such ecohydrological fluxes, which are sensitive to increases in air temperature and changing precipitation and fog regimes. Furthermore, to better inform effective conservation and restoration strategies, more work is needed to elucidate how key ecohydrological processes are affected by land use conversion to agriculture and pasture lands, as human activities influence the water budgets in Neotropical montane watersheds not only at regional‐scales but also globally.