Abstract. The Mediterranean Forecasting Systems produces operational analyses, reanalyses and 10-day forecasts for many Essential Ocean Variables (EOVs), from currents, temperature to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24 degrees (approximately 4 km) and 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO) and the wave (WAV) components coupled offline, consisting of both numerical models and data assimilation modules. The 3 components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10-day forecasts are produced by the PHY, BIO and WAV components as well as analyses, while reanalyses are produced for the past 30 years about every ~3 years and extended (yearly). The modelling systems, their coupling strategy and evolution is illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated on a common three-year period (2018–2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses.
Abstract. The Mediterranean Sea is a quasi-permanently stratified and oligotrophic basin with intense late-winter and early-spring phytoplankton blooms typically limited to few regions (i.e. northwestern Mediterranean Sea, the southern Adriatic Sea, and the Rhodes Gyre). In these areas, blooms are sustained by nutrient injection to surface layers by winter vertical mixing and convective processes. A markedly intense bloom was predicted in spring 2022 in an unusual area of the southeastern Mediterranean Sea (i.e. southeast of Crete) by the Mediterranean Sea Copernicus Marine Forecasting Centre (MED MFC) system. Combining Copernicus modelling and observation products, the 2022 event and a number of driving and concurrent features have been investigated in a multidisciplinary way. A noticeable cold spell that occurred in Eastern Europe at the beginning of 2022 has been identified as the main driver of an intense deep-water formation event, with associated high nutrient concentrations in the surface layers. Consequently, an extreme phytoplankton bloom that was 50 % more intense than usual occurred in the area southeast of Crete, starting nearly 1 month later than usual and lasting for 3–4 weeks. Impacts on primary production were also relevant in the 2022 event area and were 35 % higher than the climatological annual primary production. Furthermore, the documented link between primary productivity and fishery catches suggests possible consequences along the whole food chain up to the marine ecosystem in the eastern Mediterranean Sea.
Abstract. Biogeochemical-Argo (BGC-Argo) float profiles provide substantial information for key vertical biogeochemical dynamics and successfully integrated in biogeochemical models via data assimilation approaches. Although results on the BGC-Argo assimilation are encouraging, data scarcity remains a limitation for their effective use in operational oceanography. To address availability gaps in the BGC-Argo profiles, an Observing System Experiment (OSE), that combines Neural Network (NN) and Data Assimilation (DA), has been performed here. NN was used to reconstruct nitrate profiles starting from oxygen profiles and associated Argo variables (pressure, temperature, salinity), while a variational data assimilation scheme (3DVarBio) has been upgraded to integrate BGC-Argo and reconstructed observations in the Copernicus Mediterranean operational forecast system (MedBFM). To ensure high quality of oxygen data, a post-deployment quality control method has been developed with the aim of detecting and eventually correcting potential sensors drift. The Mediterranean OSE features three different setups: a control run without assimilation; a multivariate run with assimilation of BGC-Argo chlorophyll, nitrate, and oxygen; and a multivariate run that also assimilates reconstructed observations. The general improvement of skill performance metrics demonstrated the feasibility in integrating new variables (oxygen and reconstructed nitrate). Major benefits have been observed in reproducing specific BGC process-based dynamics such as the nitracline dynamics, primary production and oxygen vertical dynamics. The assimilation of BGC-Argo nitrate corrects a generally positive bias of the model in most of the Mediterranean areas, and the addition of reconstructed profiles makes the corrections even stronger. The impact of enlarged nitrate assimilation propagates to ecosystem processes (e.g., primary production) at basin wide scale, demonstrating the importance of BGC-profiles in complementing satellite ocean colour assimilation.
<p>New insights on marine biogeochemical state and variability are yielded by recently available autonomous observation platforms such as the BGC-Argo floats. Additionally, the integration of BGC-Argo data and modelling systems can provide a further improvement on understanding marine biogeochemical dynamics. Indeed BGC-Argo variables can be profitably used for tuning and validation of biogeochemical models, and in data assimilation.</p><p>The Mediterranean Sea CMEMS marine forecasting system represents a convincing example of such integration: nitrate and chlorophyll BGC-Argo profiles are already assimilated providing corrections on nutrient and phytoplankton vertical dynamics, while&#160; float oxygen data are used for validation and will be integrated in the data assimilation scheme in 2022. Despite their value, BGC float oxygen measurements are prone to uncertainties such as those related to sensor drifts and their real time and operational use requires caution and specific quality control.</p><p>Since the quality control procedures on the real-time oxygen data are limited and automatic and considering that the presence of trend in the deep ocean can be considered a proxy for oxygen sensor drift, a novel operational quality assessment procedure of BGC-Argo oxygen data for model validation and assimilation is here proposed.&#160;</p><p>The QC procedure is based on (1) sensor drift computation with the RANSAC (RANdom SAmple Consensus) and Theil-Sen non parametric statistical estimators at two selected depths: 600 and 800m and (2) suspicious drift-oxygen-profiles correction. <br>Moreover, drift-corrected and uncorrected oxygen profiles are subjected to additional checks: (i) Comparison of surface value with oxygen at saturation (ii) Offset calculation between data and EMODnet2018_int climatological values at 550-650m (iii) Model-data misfit threshold.</p><p>The QC criteria have constrained more than one third of oxygen data to be corrected for a suspicious drift. In most cases, the removal of the drift acted as a relaxation factor towards the reference climatological fields.<br>To test the assimilation of quality-checked oxygen profiles into the CMEMS Mediterranean model system, a set of 2-year OGSTM-BFM-3DVarBio simulations have been implemented. Results show the feasibility of the oxygen data assimilation and the potential much higher impact of oxygen BGC-Argo data with respect to the chlorophyll and nitrate sensors given the evolution of the numbers of BGC-Argo sensors in recent years.</p>
<p>Continental shelves cover less than 5% of the global ocean surface, but play a crucial role in the marine global biogeochemical cycling. Coastal ecosystem dynamics are governed and constrained to a wide extent by the biogeochemical processes occurring in the benthic domain. Such processes define the so called benthic-pelagic coupling (hereafter BPC), i.e. two-way exchange of organic matter (particulate and dissolved) and inorganic compounds. The physically mediated exchanges structuring the BPC are constituted by the sinking and resuspension fluxes of particulate organic matter and by the diffusion of inorganic nutrients. Despite its importance and the continuous enhancement of model resolution, the BPC in global marine ecosystem models is generally roughly approximated. Moreover, observational data focusing on the BPC dynamics are fairly scanty in time and space, thereby hampering model parameterization and validation. The main objectives of this study are to develop and test a numerical model addressing BPC processes and to evaluate ecosystem dynamics in marine areas with different climatic and ecological characteristics. In particular, we here focused on two key interaction processes: the sinking velocity of particulate matter and the diffusive fluxes of inorganic dissolved nutrients at the benthic-pelagic interface. The benthic sub-model has been calibrated accounting for the complex pelagic food web and for the main ecological and physical characteristics of continental shelf areas in different sites: Gulf of Trieste (Italy), St. Helena Bay (South Africa), Svinoy Fyr (Norway). At each study area, the one-dimensional coupled BFM-NEMO modelling system was setup by prescribing temperature and salinity vertical profiles in NEMO, while the shortwave radiation acts as a primary forcing of BFM. Model results have been validated with available in situ data.</p><p>Sensitivity tests has been performed to investigate the role of the BPC exchanges in determining the pelagic biogeochemical cycles and to carry out a comparative analysis accounting for each site characteristics.</p>
Abstract. Biogeochemical-Argo (BGC-Argo) float profiles provide substantial information for key vertical biogeochemical dynamics and successfully integrated in biogeochemical models via data assimilation approaches. Although results on the BGC-Argo assimilation are encouraging, data scarcity remains a limitation for their effective use in operational oceanography. To address availability gaps in the BGC-Argo profiles, an Observing System Experiment (OSE), that combines Neural Network (NN) and Data Assimilation (DA), has been performed here. NN was used to reconstruct nitrate profiles starting from oxygen profiles and associated Argo variables (pressure, temperature, salinity), while a variational data assimilation scheme (3DVarBio) has been upgraded to integrate BGC-Argo and reconstructed observations in the Copernicus Mediterranean operational forecast system (MedBFM). To ensure high quality of oxygen data, a post-deployment quality control method has been developed with the aim of detecting and eventually correcting potential sensors drift. The Mediterranean OSE features three different setups: a control run without assimilation; a multivariate run with assimilation of BGC-Argo chlorophyll, nitrate, and oxygen; and a multivariate run that also assimilates reconstructed observations. The general improvement of skill performance metrics demonstrated the feasibility in integrating new variables (oxygen and reconstructed nitrate). Major benefits have been observed in reproducing specific BGC process-based dynamics such as the nitracline dynamics, primary production and oxygen vertical dynamics. The assimilation of BGC-Argo nitrate corrects a generally positive bias of the model in most of the Mediterranean areas, and the addition of reconstructed profiles makes the corrections even stronger. The impact of enlarged nitrate assimilation propagates to ecosystem processes (e.g., primary production) at basin wide scale, demonstrating the importance of BGC-profiles in complementing satellite ocean colour assimilation.
Biogeochemical seasonal cycle in the Mediterranean Sea is characterized by late-winter early-spring phytoplankton blooms driven by vertical mixing events that bring nutrients to surfacelayers. Relatively intense bloom events are usually observed in areas where mixing is strong andpersistent enough to significantly impact concentration of nutrients in surface layers.A markerlymarkedly intense bloom was forecasted in spring 2022 by the Med-MFC system, theproduction center of the Copernicus Marine Service for the Mediterranean Sea, in thesoutheastern basin (in the Cretan area). Thanks to the three-dimensional description of oceanphysical and biogeochemical dynamics at relatively high resolution (1/24°) provided by theMed-MFC system, it has been possible to investigate various elements of the spring 2022 events.In particular chlorophyll was 50% higher than usual, and patches of high chlorophyllconcentration lasted for 3/4 weeks. Comparison with satellite observations confirmed the notableevent and its anomaly with respect to past bloom events in the area. In this work, we investigatethe processes occurring in the area in spring 2022 using physical and biogeochemical Med-MFCproducts as well as available observations. Results show that the spring 2022 event is particularlystrong with respect to climatology of the area and provide indications on the relationshipbetween the bloom and the forcing physical processes, e.g., water mass formation and mixing.Moreover, it has been demonstrated the Med-MFC system capability to monitor in a real timeframework ocean health conditions and extreme marine events in the southeasternMediterranean.
<p>Ocean reanalyses integrate models and observations to provide a continuous and consistent reconstruction of the past physical and biogeochemical ocean state and variability. We present a reanalysis of the Mediterranean Sea biogeochemistry at a 1/24<sup>o</sup> resolution developed within the Copernicus Marine Service framework. The reanalysis is based on the Biogeochemical Flux Model (BFM) coupled with a variational data assimilation scheme (3DVarBio) and forced by the NEMO&#8211;OceanVar Mediterranean reanalysis and the ERA5 atmospheric reanalysis. Covering the 1999&#8211;2021 period, the reanalysis assimilates ESA-CCI satellite chlorophyll data and integrates EMODnet data as initial conditions, in addition to considering World Ocean Atlas data at the Atlantic boundary, CO2 atmospheric observations, and yearly estimates of riverine nutrient inputs.</p><p>With the use of multiple observation sources (remote, <em>in situ</em>, and BGC-Argo), the quality of the biogeochemical reanalysis is qualitatively and quantitatively assessed at three validation levels. Results of the first validation-level indicate an overall pretty good reanalysis skill in simulating basin-wide values and variability in the biogeochemical variables, such as phytoplankton biomass, net primary production and CO2 air-sea flux. Then, chlorophyll, nutrients, oxygen, and carbonate system variables show also satisfactory uncertainty in reproducing <em>in situ</em> observations at the mesoscale and weekly temporal scale. The uncertainty increases for a few variables (i.e., oxygen and ammonium) in the mesopelagic layers. Finally, using specific and process-oriented skill metrics based on BGC-Argo data, the vertical dynamics of phytoplankton and nitrate are positively assessed.</p><p>As a consequence of the continuous increases in temperature, salinity and atmospheric CO2 in the Mediterranean Sea over the last 20 years, the reanalysis results indicate basin-wide biogeochemical signals of surface deoxygenation, increase in alkalinity and dissolved inorganic carbon concentrations, and decrease in pH at the surface. The new, high-resolution reanalysis, open and freely available from the Copernicus Marine Service, allows users from different communities to investigate the spatial and temporal variability in 12 biogeochemical variables and fluxes at different scales (from the mesoscale to the basin-wide scale and from daily to multiyear scales) and the interaction between physical and biogeochemical processes shaping Mediterranean marine ecosystem functioning.</p>
Abstract. Biogeochemical-Argo (BGC-Argo) float profiles provide substantial information for key vertical biogeochemical dynamics and successfully integrated in biogeochemical models via data assimilation approaches. Although results on the BGC-Argo assimilation are encouraging, data scarcity remains a limitation for their effective use in operational oceanography. To address availability gaps in the BGC-Argo profiles, an Observing System Experiment (OSE), that combines Neural Network (NN) and Data Assimilation (DA), has been performed here. NN was used to reconstruct nitrate profiles starting from oxygen profiles and associated Argo variables (pressure, temperature, salinity), while a variational data assimilation scheme (3DVarBio) has been upgraded to integrate BGC-Argo and reconstructed observations in the Copernicus Mediterranean operational forecast system (MedBFM). To ensure high quality of oxygen data, a post-deployment quality control method has been developed with the aim of detecting and eventually correcting potential sensors drift. The Mediterranean OSE features three different setups: a control run without assimilation; a multivariate run with assimilation of BGC-Argo chlorophyll, nitrate, and oxygen; and a multivariate run that also assimilates reconstructed observations. The general improvement of skill performance metrics demonstrated the feasibility in integrating new variables (oxygen and reconstructed nitrate). Major benefits have been observed in reproducing specific BGC process-based dynamics such as the nitracline dynamics, primary production and oxygen vertical dynamics. The assimilation of BGC-Argo nitrate corrects a generally positive bias of the model in most of the Mediterranean areas, and the addition of reconstructed profiles makes the corrections even stronger. The impact of enlarged nitrate assimilation propagates to ecosystem processes (e.g., primary production) at basin wide scale, demonstrating the importance of BGC-profiles in complementing satellite ocean colour assimilation.