Abstract Background Acute pancreatitis is a common complication of endoscopic retrograde cholangiopancreatography and benefit of pharmacological treatment is unclear. Although prophylactic use of corticosteroid for reduction of pancreatic injury after ERCP has been evaluated, discrepancy about beneficial effect of corticosteroid on pancreatic injury still exists. The aim of current study is to evaluate effectiveness and safety of corticosteroid in prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP). Methods We employed the method recommended by the Cochrane Collaboration to perform a meta-analysis of seven randomized controlled trials (RCTs) of corticosteroid in prevention of post-ERCP pancreatitis (PEP) around the world. Results Most of the seven RCTs were of high quality. When the RCTs were analyzed, odds ratios (OR) for corticosteroid were 1.13 [95% CI (0.89~1.44), p = 0.32] for PEP, 1.61 [95% CI (0.74~3.52), p = 0.23] for severe PEP, 0.92 [95% CI (0.57~1.48), p = 0.73] for post-ERCP hyperamylasemia respectively. The results indicated that there were no beneficial effects of corticosteroid on acute pancreatitis and hyperamylasemia. No evidence of publication bias was found. Conclusion Corticosteroids cannot prevent pancreatic injury after ERCP. Therefore, their use in the prophylaxis of PEP is not recommended.
Abstract Background FABP1 has been reported to possess strong antioxidant properties. Upon successful transfection of the Chang cell line, which has undetectable FABP1 mRNA levels, with human FABP1 cDNA, the Chang cells were shown to express FABP1. Using the transfected and control (normal) Chang cells and subjecting them to oxidative stress, transfected cells were reported to be associated with enhanced cell viability. This study extends those observations by investigating the effect of FABP1 on acetaminophen (AAP)-induced hepatotoxicity. We hypothesized that presence of FABP1 would enhance cell viability compared to control cells (vector transfected cells). Methods Following AAP treatment of Chang FABP1 transfected and control cells, cell viability, oxidative stress, and apoptosis were evaluated using lactate dehydrogenase (LDH) release, the fluorescent probe DCF, and Bax expression, respectively. Results FABP1 cDNA transfected cells showed greater resistance against AAP toxicity than vector transfected cells. Significantly lower LDH levels (p < 0.05) were observed as were lower DCF fluorescence intensity (p < 0.05) in FABP1 cDNA transfected cells compared to vector transfected cells. FABP1 expression also attenuated the expression of Bax following AAP induced toxicity. Conclusion FABP1 attenuated AAP-induced toxicity and may be considered a cytoprotective agent in this in vitro model of drug induced oxidative stress.
Liver cirrhosis is one of the major consequences of hepatitis B virus (HBV) infection, and transplantation of autologous bone marrow mesenchymal stem cells (ABMSCs) is one of promising therapies for patients with HBV-related liver cirrhosis (HBV-LC). However, the mechanism is unclear. The aim of the current study was to explore the role of Treg/Th17 cells in ABMSCs transplantation in patients with HBV-LC.In this prospective study, 56 patients were enrolled and randomly assigned to transplantation group and control group. After 24-week follow-up, 39 patients completed the study (20 cases in transplantation group and 19 cases in control group). The Model for End-Stage Liver Disease scores, liver function, changes of Treg/Th17 cells, as well as related transcription factors and serum cytokines, were determined.Although patients in both groups showed significant improvement after Entecavir treatment, ABMSC transplantation further improved patients' liver function. Moreover, there was a significant increase in Treg cells and a marked decrease in Th17 cells in the transplantation group compared with control, leading to an increased Treg/Th17 ratio. Furthermore, mRNA levels of Treg-related transcription factor (Foxp3) and Th17-related transcription factor (RORγt) were increased and decreased, respectively. In addition, serum transforming growth factor-β levels were significantly higher at early weeks of transplantation, while serum levels of interleukin-17, tumor necrosis factor-α, and interleukin-6 were significantly lower in patients in the transplantation group compared with control.ABMSCs transplantation was effective in improving liver function in patients with HBV-LC, which was mediated, at least in part, through the regulation of Treg/Th17 cell balance.
Abstract Background and Aim Cholangiocarcinoma (CCA) is an often fatal primary cancer of the liver that tends to be resistant to chemotherapy. Multidrug resistance proteins (MRPs) contribute to the chemoresistance of these tumors. The objectives of the study were to document MRP expression profiles in two representative human intrahepatic and extrahepatic CCA cells lines (HuCCT1 and KMBC, respectively) and gemcitabine‐induced cytotoxicity prior to and following MRP knockdown. Methods Multidrug resistance protein mRNA and protein expression were documented by real‐time reverse transcription–polymerase chain reaction and western blots, respectively. MRP knockdown was achieved with lentivirus small hairpin RNA constructs. Results Prior to gemcitabine exposure, MRP1, MRP2, MRP4, MRP5, and MRP6 mRNA were expressed in HuCCT1 cells and MRP1, MRP3, MRP4, and MRP5 in KMBC cells. Following gemcitabine exposure, MRP5 and MRP6 expressions were significantly upregulated in HuCCT1 cells and MRP5 in KMBC cells. In HuCCT1 cells, although MRP5 knockdown had no effect, MRP6 knockdown significantly increased gemcitabine‐induced cytotoxicity. In KMBC cells, MRP5 knockdown significantly increased gemcitabine cytotoxicity. Conclusions Inhibition of MRP6 expression in intra‐hepatic and MRP5 in extra‐hepatic should be explored as potential treatments for CCA in humans.