Abstract We adapt from volcano seismology an automated method of locating icequakes with poorly defined onsets and indistinguishable seismic phases, which can be tuned to either body or surface waves. The method involves (1) the calculation of the root-mean-squared amplitudes of the filtered envelope signals, (2) a coarse-grid search to locate the hypocentres of the seismic events using their amplitudes and (3) refinement of hypocentre locations using an iteratively damped least-squares approach. First, we calibrate the adapted method by application to real data, recorded using a network of six passive seismometers, in response to surface explosions in known locations on the western margin of the Greenland ice sheet. Second, we present a seismic modelling experiment simulating rapid supraglacial lake drainage driven hydrofracture through 1 km thick ice. The test reveals horizontal and vertical location uncertainties of ∼121 m and 275 m, respectively. Since seismic emissions from glaciers and ice sheets often have complex waveforms akin to those considered here, our adapted method is likely to have widespread applicability to glaciological problems.
Abstract. It has been argued that the infiltration and retention of meltwater within firn across the percolation zone of the Greenland ice sheet has the potential to buffer up to ~3.6 mm of global sea level rise (Harper et al., 2012). Despite evidence confirming active refreezing processes above the equilibrium line, their impact on runoff and proglacial discharge has yet to be assessed. Here we compare meteorological, melt, firn-stratigraphy and discharge data from the extreme 2010 and 2012 summers to determine the relationship between atmospheric forcing and runoff across the Kangerlussuaq catchment of the Greenland ice sheet, which drains into Watson River. The bulk discharge in 2012 of 6.8 km3 exceeded that of 2010 of 5.3 km3 by 28 %, despite only a 3 % difference in net energy available for melt between the two summers. This large disparity in discharge response can be explained by a 24 % contribution of runoff originating from above the long-term equilibrium line in 2012, triggered by diminished firn retention that culminated in three days of record discharge from 11 July of 3100 m3 s−1 (0.27 km3 d−1) that washed-out the Kangerlussuaq bridge. Throughout the 2010 melt-season, there was a steady increase in the residual difference between integrated melt over the catchment and cumulative proglacial discharge that by mid-September equated to 21 % (~1.1 km3) of the total melt generated being retained within the catchment. In 2012 a similar pattern is observed until 11 July, after which the residual fell by 50 % and further diminished so that less than 0.4 km3 (~5 %) of the total melt was retained by the end of the summer. Cumulative energy receipts versus bulk discharge further indicate a marked contrast between the two melt-seasons, such that in 2012 there was a noteably higher discharge response per unit energy forcing after the 11 July. Density profiles from cores and pits within the accumulation area acquired in April 2012 reveal an extensive, dense, ice-layer between 0.9 to 1.4 m snow depth that extended from the equilibrium line to at least 1840 m elevation. This perched superimposed ice layer can be attributed to melt refreezing during previous summers and we hypothesise that in July 2012, it provided a barrier to further infiltration rendering the underlying pore space inaccessible thereby forcing extensive runoff from the accumulation zone. Discharge was further amplified by catchment hypsometry, leading to a disproportionate increase in the area contributing to runoff as the melt-level rose above the ice sheet plateau in July 2012. Satellite imagery and oblique aerial photographs confirm an active network of supraglacial rivers extending 140 km from the ice margin providing strong support for the hypothesis. Our findings substantiate active infiltration processes across the percolation zone of the Greenland ice sheet though the resulting patterns of refreezing are complex and can lead to spatially extensive, perched superimposed layers within the firn. In 2012, such layers extended to 1840 m providing a low-permeable obstruction to further meltwater storage, thereby promoting runoff into the hydrological system that contributed directly to sea-level rise.
Abstract Subglacial hydrological systems require innovative technological solutions to access and observe. Wireless sensor platforms can be used to collect and return data, but their performance in deep and fast-moving ice requires quantification. We report experimental results from Cryoegg: a spherical probe that can be deployed into a borehole or moulin and transit through the subglacial hydrological system. The probe measures temperature, pressure and electrical conductivity in situ and returns all data wirelessly via a radio link. We demonstrate Cryoegg's utility in studying englacial channels and moulins, including in situ salt dilution gauging. Cryoegg uses VHF radio to transmit data to a surface receiving array. We demonstrate transmission through up to 1.3 km of cold ice – a significant improvement on the previous design. The wireless transmission uses Wireless M-Bus on 169 MHz; we present a simple radio link budget model for its performance in cold ice and experimentally confirm its validity. Cryoegg has also been tested successfully in temperate ice. The battery capacity should allow measurements to be made every 2 h for more than a year. Future iterations of the radio system will enable Cryoegg to transmit data through up to 2.5 km of ice.
Abstract. Seismic amplitude-versus-angle (AVA) methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming) till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to > λ / 4, with λ = 12 m). For dilatant layers less than λ / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26±0.59 × 106 kg m−2 s−1) underlying a water-saturated dilatant till layer (thickness < 2 m, Poisson's ratio ~ 0.5). Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units.
Earth and Space Science Open Archive This work has been accepted for publication in Journal of Geophysical Research - Earth Surface. Version of RecordESSOAr is a venue for early communication or feedback before peer review. Data may be preliminary. Learn more about preprints. preprintOpen AccessYou are viewing the latest version by default [v2]Controls on water storage and drainage in crevasses on the Greenland Ice SheetAuthorsThomas RussellChudleyiDPoulChristoffersenSamuel HuckerbyDoyleiDThomasDowlingiDRobertLawCharlotteSchoonmaniDMarionBougamontiDBrynHubbardiDSee all authors Thomas Russell ChudleyiDCorresponding Author• Submitting AuthorUniversity of CambridgeiDhttps://orcid.org/0000-0001-8547-1132view email addressThe email was not providedcopy email addressPoul ChristoffersenUniversity of Cambridgeview email addressThe email was not providedcopy email addressSamuel Huckerby DoyleiDAberystwyth UniversityiDhttps://orcid.org/0000-0002-0853-431Xview email addressThe email was not providedcopy email addressThomas DowlingiDKing's College LondoniDhttps://orcid.org/0000-0003-0569-4462view email addressThe email was not providedcopy email addressRobert LawUniversity of Cambridgeview email addressThe email was not providedcopy email addressCharlotte SchoonmaniDUniversity of CambridgeiDhttps://orcid.org/0000-0002-2882-9916view email addressThe email was not providedcopy email addressMarion BougamontiDCambridge UniversityiDhttps://orcid.org/0000-0001-7196-4171view email addressThe email was not providedcopy email addressBryn HubbardiDAberystwyth UniversityiDhttps://orcid.org/0000-0002-3565-3875view email addressThe email was not providedcopy email address
Temporal variations in ice sheet flow directly impact the internal structure within ice sheets through englacial deformation. Large-scale changes in the vertical stratigraphy within ice sheets have been previously conducted on centennial to millennial timescales; however, intra-annual changes in the morphology of internal layers have yet to be explored. Over a period of 2 years, we use autonomous phase-sensitive radio-echo sounding to track the daily displacement of internal layers on Store Glacier, West Greenland, to millimeter accuracy. At a site located ∼30 km from the calving terminus, where the ice is ∼600 m thick and flows at ∼700 m/a, we measure distinct seasonal variations in vertical velocities and vertical strain rates over a 2-year period. Prior to the melt season (March-June), we observe increasingly nonlinear englacial deformation with negative vertical strain rates (i.e., strain thinning) in the upper half of the ice column of approximately -0.03 a-1, whereas the ice below thickens under vertical strain reaching up to +0.16 a-1. Early in the melt season (June-July), vertical thinning gradually ceases as the glacier increasingly thickens. During late summer to midwinter (August-February), vertical thickening occurs linearly throughout the entire ice column, with strain rates averaging 0.016 a-1. We show that these complex variations are unrelated to topographic setting and localized basal slip and hypothesize that this seasonality is driven by far-field perturbations in the glacier's force balance, in this case generated by variations in basal hydrology near the glacier's terminus and propagated tens of kilometers upstream through transient basal lubrication longitudinal coupling.