One xenolith of a contactly metamorphosed feldspar-hydroxyapophyllite hornfels from basaltic volcanite of the active quarry in Těchlovice village near-by the town of Děčín has been investigated. Its main components are represented by K-feldspar and hydroxyapophyllite-(K), which was hitherto reported from a single locality only in the territory of the Czech Republic. It forms grains up to 2 mm in size tightly associated with K-feldspar and subsidiary quartz, pyroxene (aegirine, enstatite-ferrosilite and diopside) and titanite. The unit cell parameters of hydroxyapophyllite-(K), derived from the powder X-ray data, are a = 8.975(4), c = 15.8371(3) Å and V = 1275.6(5) Å3. Chemical analyses correspond to the empirical formula K0.93Ca3.75Si7.87O20(OH0.96F0.04)·8 H2O. The xenolith originated by a comparatively weak contact metamorphic effect of the basaltic magma to a marly sediment under high partial pressure of H2O. Among xenoliths of North Bohemian Cainozoic volcanites the rock represents a rarity, which has not been known hitherto.
Abstract. Lazerckerite, ideally Ag3.75Pb4.5(Sb7.75Bi4)S24, is a new mineral species found in medieval mine dumps of the historic Ag–Pb–Zn Kutná Hora ore district, Czech Republic. The mineral is associated with other Sb–Bi lillianite homologues (terrywallaceite, gustavite, holubite) and Ag,Bi-bearing galena, most frequently as grain aggregates and replacement rims of earlier Ag–Pb–Bi minerals, growing together in aggregates of up to 0.6×0.3 mm. Lazerckerite is opaque, is steel grey in colour, and has a metallic lustre; the calculated density is 5.920 g cm−3. In reflected light lazerckerite is greyish white, and bireflectance and pleochroism are weak with grey tints. Anisotropy is weak to moderate with grey to bluish-grey rotation tints. Internal reflections are not observed. Electron microprobe analyses yielded the empirical formula, based on 44 apfu, (Ag3.61Cu0.04)Σ3.65(Pb4.55Fe0.01Cd0.01)Σ4.57(Sb7.87Bi3.75)Σ11.62(S24.15Se0.01)Σ24.16. Its unit cell parameters are a=13.2083(9), b=19.4595(8), c=8.4048(13), β=90.032(7)°, V=2160.3(4) Å3, space group P21/c, and Z=2. The structure of lazerckerite contains two Pb sites (Pb1 and Pb2) in bicapped trigonal prismatic coordination, 8 independent octahedral sites, and 13 distinct sulfur positions. Four of the octahedral sites are mixed (Sb,Bi) and (Bi,Sb) sites, one is a mixed (Ag,Bi) site, and one is a mixed (Sb,Pb) site. The new mineral belongs to the andorite branch of the lillianite homologous series with N=4 and is a new addition to the group of Sb–Bi mixed members of the series. Lazerckerite is defined as a lillianite homologue with the three following requirements: N=4, L (Ag++ (Bi3+, Sb3+) ↔ 2 Pb2+ substitution) ≈ 90 %–95 %, and approximately one-third of atom percentage of antimony is replaced by bismuth (Bi/(Bi+Sb) ≈ 0.30–0.38). The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA 2022-113) and named after Lazarus Ercker, the supreme Royal Bergmeister of the Kingdom of Bohemia and the Master of Prague Mint.
Abstract The paragenesis and composition of bavenite–bohseite were investigated in fifteen granitic pegmatites from the Bohemian Massif, Czech Republic. Three types distinct in their relation to primary Be precursors, mineral assemblages, morphology and origin were recognised: (1) primary hydrothermal bavenite–bohseite crystallised in miarolitic pockets from residual pegmatite fluids; and secondary bavenite–bohseite in two distinct types: (2) a proximal type restricted spatially to pseudomorphs after a primary Be mineral (beryl > phenakite, helvine–danalite); and (3) a distal type on brittle fractures and fissures of host pegmatite. The mineral assemblages are highly variable: (1) axinite-(Mn), smectite, calcite and pyrite; (2) bertrandite, milarite, secondary beryl, bazzite, K-feldspar, muscovite–illite, scolecite, gismondine-Ca, analcime, chlorite; and (3) muscovite, albite, quartz, epidote, pumpellyite-(Mg), pumpellyite-(Fe 3+ ), titanite and chlorite. Electron microprobe analyses showed, in addition to major constituents (Si, Ca and Al), minor concentrations (in apfu) of Na (≤0.24), Fe (≤0.10), Mn (≤0.10) and F (≤0.36). The type 1 hydrothermal miarolitic bavenite–bohseite is mostly Al-rich (2.00–0.67 apfu) relative to type 2 proximal bavenite–bohseite and bohseite after beryl, phenakite and helvine–danalite (1.56–0.46, 0.70–0.05, 1.02–0.35 apfu, respectively); and type 3 distal bavenite–bohseite typically after beryl (1.63–0.09 apfu). Raman spectroscopy revealed that the distance between the OH – vibrational modes decreases with increasing bohseite component. The Al content of secondary type 2 proximal bavenite–bohseite is controlled by the composition of the Be precursor whereas type 3 distal bavenite–bohseite with beryl as the Be precursor is more variable and the composition is governed mainly by the composition of fluids. Calcium, a crucial component for bavenite–bohseite origins, was derived from residual pegmatite fluids (Vlastějovice, Vepice IV or Třebíč Plutons) or external sources (e.g. Drahonín IV, Věžná I or Maršíkov). Primary type 1 hydrothermal bavenite–bohseite from miarolitic pockets might have crystallised at T ≈ 300–400°C and P ≈ 200 MPa, whereas the secondary type 2 and 3 bavenite–bohseite formed at T ≈ 300–100°C and P ≈ 200–20 MPa.
Minerals of crandallite group and synchysite were found on base-metal ore veins at historical deposit Zlatý důl near Hlubocky, which is hosted by the Lower Carboniferous flysch sediments of the Moravo-Silesian Culm. Minerals of crandallite group were discovered in a sample which is formed by Fe-rich dolomite, quartz, anatase and ore minerals (primary phases: chalcopyrite, pyrite and galena, secondary phases: chalcocite, covellite, limonite and native copper). The sample is cut by younger calcite vein. Euhedral zoned crystals of minerals of crandallite group, up to 25 µm in size, were found to be enclosed in Fe-rich dolomite. Lighter zones (in BSE image) contained more REE and Sr than darker zones. Four endmembers - crandallite, florencite-(REE), goyazite and gorceixite participate on chemical composition of these minerals, taking 17.4 - 56.5, 14.1 - 53.3, 4.2 - 66.5 and 0.0 - 0.2 mol. %, respectively. Synchysite was found in the same sample and also in a sample, which is formed mostly of quartz and sulphides (chalcopyrite > galena). Synchysite formed isometric or irregular grains, ? 70 µm in size. The presence of synchysite-(Y) and synchysite-(Ce) was revealed from available microprobe compositional data. Both phosphates and carbonates are enriched in LREE, carbonates are also enriched in MREE. Rare-earth elements were probably leached by hydrothermal fluids from REE-rich minerals from host Culmian sediments.
Abstract Hakite-(Cd), hakite-(Fe) and hakite-(Zn) are new minerals belonging to the tetrahedrite group and forming, along with hakite-(Hg), the hakite series. They have been discovered in samples collected from the Bytíz deposit, in the uranium and base-metal Příbram ore district, Central Bohemia, Czech Republic. They occur as anhedral grains, up to 300 μm in size, in a calcite gangue, associated with clausthalite, cadmoselite, hakite-(Hg) [for hakite-(Cd)], berzelianite, bukovite, bytízite, crookesite, chaméanite, eskebornite, příbramite, the not yet approved giraudite-(Hg) and giraudite-(Cu) , hakite-(Hg), umangite, chalcopyrite, tetrahedrite-(Zn) and a new Cu–As selenide [for hakite-(Fe) and -(Zn)]. The three new species are black, with a metallic lustre. Mohs hardness is ca . 3½–4; calculated density is 6.019 (Hak-Cd), 6.011 (Hak-Fe) and 6.081 g.cm –3 (Hak-Zn). In reflected light, they are isotropic, pale grey with bluish (Hak-Cd) or brownish (Hak-Fe and Hak-Zn) shades. Empirical formulae of hakite-(Cd), hakite-(Fe), and hakite-(Zn) are Cu 9.71 Ag 0.24 Cd 1.51 Hg 0.43 Zn 0.03 (Sb 3.94 As 0.13 ) Σ4.07 Se 11.35 S 1.57 , Cu 10.11 Ag 0.18 Fe 0.81 Zn 0.50 Hg 0.26 (Sb 3.72 As 0.41 ) Σ4.13 Se 12.65 S 0.12 , and Cu 10.03 Ag 0.24 Zn 0.61 Fe 0.53 Hg 0.45 (Sb 3.55 As 0.60 ) Σ4.15 Se 12.82 S 0.08 , respectively. These formulae correspond to the end-member formulae Cu 6 (Cu 4 Cd 2 )Sb 4 Se 13 (Hak-Cd), Cu 6 (Cu 4 Fe 2 )Sb 4 Se 13 (Hak-Fe), and Cu 6 (Cu 4 Zn 2 )Sb 4 Se 13 (Hak-Zn). All these new members of the hakite series are cubic, I $\bar{4}$ 3 m , Z = 2, with unit-cell parameters a = 10.8860(6) Å, V = 1290.0(2) Å 3 (Hak-Cd); a = 10.7983(4) Å, V = 1259.12(14) Å 3 (Hak-Fe); and a = 10.8116(14) Å, V = 1263.8(5) Å 3 (Hak-Zn). These species are isotypic with the other members of the tetrahedrite group, and their crystal structures have been refined on the basis of single-crystal X-ray diffraction data down to R 1 values of 0.0230 (Hak-Cd), 0.0254 (Hak-Fe), and 0.0302 (Hak-Zn). These structural data allow us to describe the S-to-Se partitioning in hakite-series minerals and to understand the mechanisms avoiding too short Me –Se distances in these selenides.
Technical workings realized near Prackovice nad Labem (České středohoří Mts., Czech Republic) yielded new findings about rocks and mineral veins present in Cenozoic volcanites. The studied xenolith represents a piece of pyrometamorphosed and hydrothermally altered sandstone enclosed in an alkaline basic volcanic rock. The core of the xenolith contains relicts of clasts of quartz, embedded in a matrix composed of laths of quartz (probably pseudomorphs of quartz after tridymite) and symplectitic intergrowths of alkali feldspar (sanidine Or57-81Ab19-41An0-1) and quartz. This core is rimmed by drusy overgrowths of sanidine and crystals of fluorapatite, aegirine-augite and titanite. All silicates are characterized by a significant substitution of Al by Fe3+, which is probably the result of high content of Fe3+ in the sandstone protolith (perhaps in limonite cement). The marginal part of xenolith is formed by zeolites (chabazite-K and phillipsite-K), saponite and calcite. These minerals likely crystallized at very low temperatures (<100 °C) in a vug, leaving after volatiles, which were expelled during pyrometamorphism of the xenolith. In addition, we have studied tiny hydrothermal veinlets hosted by neovolcanites, composed of a mixture of Al-rich phyllosilicates (probably a mineral from the kaolinite group and smectite) and strongly substituted carbonates including siderite (Sid55-91Mag3-38Cal5-31Rdc1) and calcite (Cal58-90 Mag8-41Sid1-6).
The aim of this study was to characterize historical slags which originated during silver production from the Jihlava ore district, Czech Republic. The area was among the head producers of silver within the Lands of the Czech Crown in 13th–14th centuries. The mined ores had complex composition, being formed mostly by pyrite, sphalerite, galena, chalcopyrite, and accessory silver-rich minerals such as silver-bearing tetrahedrite (freibergite) or pyrargyrite, with gangue represented by quartz and Mn-rich carbonates or baryte. Large volumes of slags with contrasting composition were generated during the Pb-Ag production. Altogether, two main types of slags were identified in the district. The first type is characterized by high BaO contents (up to 34.5 wt.%) and dominancy of glass, minor quartz, and accessory amounts of Ba-rich feldspar (up to 93 mol.% of Cls), metal-rich inclusions, Ba-Pb sulphates and only rare pyroxene, wollastonite and melilite. The composition of the second group belongs to fayalitic slags containing glass, Fe-rich olivine, accessory pyroxene, feldspar, quartz, and inclusions of various metallic phases. Fluxes were derived from gangue (quartz, carbonates, baryte) or local host rocks for both types of slag. The calculated viscosity indexes reflect (with minor exceptions) medium-to-high effectivity of metal separation. Smelting temperatures were estimated from a series of ternary plots; however, more reliable estimates for both types of slags were obtained only from experimental determination of melting temperature and calculations using bulk/glass compositions (~1100–1200 °C).
Alkaline metasomatites (fenites) originated by pervasive Na metasomatism of granitoids of the Čistá-Jesenice Pluton (belonging to the Teplá-Barrandian unit in the NW part of the Bohemian Massif) contain a rich association of REE-bearing minerals. The occurrence of REE carbonates (bastnäsite, parisite), monazite, rhabdophane, churchite, fergusonite and pyrochlore was found in relatively weakly altered rocks (typical fenites), whereas much richer assemblage was observed in rocks which underwent the strongest metasomatism (so called reomorphic cancrinite-nepheline syenites). Here, the mineral assemblage includes in addition to all above mentioned minerals also xenotime and REE silicates, including tritomite/melanocerite, allanite, perbøeite, gadolinite and a Mn-analogue of hingganite. A common mineral phase is zircon in these rocks, too. Cerium, yttrium, and to lesser extent also lanthanum are dominating cations in the studied REE phases. A total of 24 mineral species was identified, including three unnamed phases. In most of the studied phases, the level of fractionation of REEs is high, exceptionally even extreme. Chondrite-normalized REE patterns of some phases are characterized by a pronounced M-type tetrad effect. The results of microprobe analyses suggest that individual minerals originated during several episodes, characterized by different chemical composition of the mineral-forming medium (especially with contrasting concentrations of strong REE-complexing ligands and oxygen fugacity) and/or temperature. We did not find any significant differences in chemistry of individual minerals present in various rock types showing different levels of metasomatic alteration. The obtained data are consistent with hydrothermal origin of most (if not all) reported REE-bearing phases. The material source and genesis of the studied REE+Nb+Zr mineralization was in all probability associated with hydrothermal activity in the exocontact of a deep-seated hypothetical carbonatite intrusion, as was suggested already in earlier works dealing with these remarkable rocks.