Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.
Over the past century, increases in indigenous woody plant species, also known as woody encroachment (WE), has occurred in grasslands and savannas across the globe. While the impact on grassland and savanna composition and productivity has been well studied, little is known of the impacts on the hydrological cycle. WE may increase evapotranspiration (ET) losses, leading to reduced infiltration and ultimately reduced freshwater availability, which is of particular concern in arid and semi-arid areas. The aim of this study was to determine the effect of Colophospermum mopane (mopane) encroachment on ET in a semi-arid savanna located in South Africa. Mopane is widely distributed across southern Africa, and is one of the main encroaching species of the region. Following an assessment of the validity of two surface renewal approaches, SR1 and SRDT, against short eddy covariance campaigns for sensible heat flux estimation, the SR1 approach was used to estimate ET at an experimental woody plant clearing trial from November 2019 to July 2022. For the two drier years of the study, the removal of mopane trees had little effect on ET. However, for the wettest year of the study, the removal of mopane trees decreased ET by 12%, supporting the hypothesis that the conversion from grass dominance to woody dominance can increase ET. Annual ET exceeded annual rainfall in all 3 years, indicating that the vegetation supplements its water use with soil water that has accumulated during previous wet seasons, or that tree roots facilitate hydraulic lift of deep soil water, or groundwater, to depths within the rooting depth of both trees and grasses. Further research is needed to confirm the exact mechanism involved, and the consequences of this for groundwater and streamflow at landscape scales.
Significance We develop a biogeographic approach to analyzing the presence of alternative stable states in tropical biomes. Whilst forest–savanna bistability has been widely hypothesized and modeled, empirical evidence has remained scarce and controversial, and here, applying our method to Africa, we provide large-scale evidence that there are alternative states in tree species composition of tropical vegetation. Furthermore, our results have produced more accurate maps of the forest and savanna distributions in Africa, which take into account differences in tree species composition, and a complex suite of determinants. This result is not only important for understanding the biogeography of the continent but also, to guide large-scaled tree planting and restoration efforts planned for the region.
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Fire and herbivory are important natural disturbances in grassy biomes. Both drivers are likely to influence belowground microbial communities but no studies have unravelled the long-term impact of both fire and herbivory on bacterial and fungal communities. We hypothesized that soil bacterial communities change through disturbance-induced shifts in soil properties (e.g. pH, nutrients) while soil fungal communities change through vegetation modification (biomass and species composition). To test these ideas, we characterised soil physico-chemical properties (pH, acidity, C, N, P and exchangeable cations content, texture, bulk density, moisture), plant species richness and biomass, microbial biomass and bacterial and fungal community composition and diversity (using 16S and ITS rRNA amplicon sequencing, respectively) in six long-term (18 to 70 years) ecological research sites in South African savanna and grassland ecosystems. We found that fire and herbivory regimes profoundly modified soil physico-chemical properties, plant species richness and standing biomass. In all sites, an increase in woody biomass (ranging from 12 to 50%) was observed when natural disturbances were excluded. The intensity and direction of changes in soil properties were highly dependent on the topo-pedo-climatic context. Overall, fire and herbivory shaped bacterial and fungal communities through distinct driving forces: edaphic properties (including Mg, pH, Ca) for bacteria, and vegetation (herbaceous biomass and woody cover) for fungi. Fire and herbivory explained on average 7.5 and 9.8% of the fungal community variability, respectively, compared to 6.0 and 5.6% for bacteria. The relatively small changes in microbial communities due to natural disturbance is in stark contrast to dramatic vegetation and edaphic changes and suggests that soil microbial communities, having evolved with disturbance, are resistant to change. This represents both a buffer to short-term anthropogenic-induced changes and a restoration challenge in the face of long-term changes.