In this work, the distribution of organic phosphorus (Po) species in sediment profiles of five shallow lakes was analyzed and its effect on the photo-release of dissolved phosphate (Pi) was investigated during sediment resuspension under simulated sunlight irradiation. The results show that Po was highly enriched in the surface sediment and gradually decreased as sediment depths increased: 33.10 ± 2.55-96.71 ± 7.60 mg/kg, 33.55 ± 2.34-142.86 ± 5.73 mg/kg, 57.50 ± 3.46-149.68 ± 7.67 mg/kg, 55.18 ± 4.67-168.73 ± 8.31 mg/kg, 98.75 ± 7.56-275.74 ± 10.70 mg/kg for Lake Hou, Lake Tuan, Lake Tangling, Lake Guozheng and Lake Miao, respectively. The photo-release amount of dissolved Pi in the resuspension composed of surface sediments was also higher than that of deep sediment during sediment resuspension under the simulated sunlight irradiation for 9 h. The potential reasons for these results are: (1) difference in morphology and composition of sediments at different depths: the mean particle size of sediment decreased first and then increased as sediment depths increased; (2) difference in composition of Po species with depths in the sediment profiles: more photolytic Po species existed in surface sediments confirmed by sequential extraction and 31P NMR analysis; and (3) more OH production in the resuspension composed of surface sediment under simulated sunlight irradiation, which directly influence the photo-release of dissolved Pi from photodegradation of organic phosphorus. All of these results indicate that the distribution of organic phosphorus species in the sediment profiles plays an important role in P cycle and its photodegradation during sediment resuspension may be one of the potential pathways for phosphate supplement in shallow lakes.
Over the past decade, concerns about perfluoroalkyl substances (PFAS) have increased rapidly among the scientific community due to their global distribution and persistence in various environmental matrices. The occurrences of 10 PFAS in groundwater in the alluvial-pluvial plain of Hutuo River (APPHR) in the North China Plain (NCP) were analyzed via UPLC-MS/MS and solid phase extraction. Total PFAS concentrations ranged from 0.56 ng/L to 13.34 ng/L, with an average value of 2.35 ng/L. Perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were dominant PFAS contaminants with high detection rates of 98.39% and 95.16%, respectively, and PFOA was the main pollutant with a mean concentration of 0.65 ng/L. The hydrogeological conditions have an important influence on the concentrations of PFAS in groundwater. Comparatively, the concentration of PFAS in groundwater in the study area is not very high, but it reflects that the groundwater in this region is affected by industrial sources to some extent. Local government should pay more attention on industrial pollution control and groundwater protection in this area.