Saturn's largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan's 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010-2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2-6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan's trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan.
We present here methods developed for the retrieval of air temperature profiles in the Venusian mesosphere from the absolute radiances measured by the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the Venus Express satellite. The infrared M channel of the instrument acquires multispectral images between 1000 and 5000 nm. In nighttime measurements, radiance in the range 3800–5000 nm is dominated by the thermal emission and absorption by the clouds and carbon dioxide. Since the latter is the main atmospheric component, it is possible to exploit the strong variability of its opacity in this spectral range, as resolved by the instrument, to reconstruct the vertical air temperature profile as a function of pressure. In this context we decided to adopt the Twomey et al. (1977) relaxation scheme. The resulting code was extensively tested on a set of simulated VIRTIS‐M data. Comparison of the known input conditions with the results of analysis code allowed us to evaluate the systematic and random errors affecting the retrievals procedures on a statistical basis. The code returns the vertical air temperature profile with an uncertainty of less than 1 K in the region between 70 and 7 mbar (66 and 77 km above the reference surface) and less than 4 K throughout the entire range 100–0.1 mbar (64–95 km). Finally, we present the first examples of the code applied to actual measured Venusian data, demonstrating its capability to achieve a satisfactory modeling of the observations and provide physically reasonable results.
The winter polar vortex on Saturn's largest moon Titan has profound effects on atmospheric circulation and chemistry and for the current northern midwinter season is the major dynamical feature of Titan's stratosphere and mesosphere. We use 2 years of observations from Cassini's composite infrared spectrometer to determine cross sections of five independent chemical tracers (HCN, HC 3 N, C 2 H 2 , C 3 H 4 , and C 4 H 2 ), which are then used to probe dynamical processes occurring within the vortex. Our results provide compelling evidence that the vortex acts as a strong mixing barrier in the stratosphere and mesosphere, effectively separating a tracer‐enriched air mass in the north from air at lower latitudes. In the mesosphere, above the level of the vortex jet, a tracer‐depleted zone extends away from the north pole toward the equator and enrichment is confined to high northern latitudes. However, below this level, mixing processes cause tongues of gas to extend away from the polar region toward the equator. These features are not reproduced by current general circulation models and suggest that a residual polar circulation is present and that waves and instabilities form a more important part of Titan's atmospheric dynamics than previously thought. We also observe an unexpected enrichment of C 4 H 2 in the northern stratosphere, which suggests photochemical polymerization of C 2 H 2 . Our observations provide stringent new constraints for dynamical and photochemical models and identify key polar processes for the first time. Some of the processes we see have analogues in Earth's polar vortex, while others are unique to Titan.
The climate on Earth is generally determined by the amount and distribution of incoming solar radiation, which must be balanced in equilibrium by the emission of thermal radiation from the surface and atmosphere. The precise routes by which incoming energy is transferred from the surface and within the atmosphere and back out to space, however, are important features that characterize the current climate. This has been analyzed in the past by several groups over the years, based on combinations of numerical model simulations and direct observations of the Earth's climate system. The results are often presented in schematic form to show the main routes for the transfer of energy into, out of and within the climate system. Although relatively simple in concept, such diagrams convey a great deal of information about the climate system in a compact form. Such an approach has not so far been widely adopted in any systematic way for other planets of the Solar System, let alone beyond, although quite detailed climate models of several planets are now available, constrained by many new observations and measurements. Here we present an analysis of the global transfers of energy within the climate systems of a range of planets within the Solar System, including Mars, Titan, Venus and Jupiter, as modelled by relatively comprehensive radiative transfer and (in some cases) numerical circulation models. These results are presented in schematic form for comparison with the classical global energy budget analyses for the Earth, highlighting important similarities and differences. We also take the first steps towards extending this approach to other Solar System and extrasolar planets, including Mars, Venus, Titan, Jupiter and the ‘hot Jupiter’ exoplanet HD 189733b, presenting a synthesis of both previously published and new calculations for all of these planets.
Abstract In October and November 2014, spectra covering the 1.436 to 1.863‐μm wavelength range from the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope showed the presence of a vast bright north polar cap on Uranus, extending northward from about 40°N and at all longitudes observed. The feature, first detected in August 2014 from Keck telescope images, has a morphology very similar to the southern polar cap that was seen to fade before the 2007 equinox. At strong methane‐absorbing wavelengths (for which only the high troposphere or stratosphere is sampled) the feature is not visible, indicating that it is not a stratospheric phenomenon. We show that the observed northern bright polar cap results mainly from a decrease in the tropospheric methane mixing ratio, rather than from a possible latitudinal variation of the optical properties or abundance of aerosol, implying an increase in polar downwelling near the tropopause level.