Abstract. We present an overview of state-of-the-art chemistry–climate and chemistry transport models that are used within phase 1 of the Chemistry–Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.
Abstract We describe the scientific and technical implementation of two models for a core set of experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The models used are the physical atmosphere‐land‐ocean‐sea ice model HadGEM3‐GC3.1 and the Earth system model UKESM1 which adds a carbon‐nitrogen cycle and atmospheric chemistry to HadGEM3‐GC3.1. The model results are constrained by the external boundary conditions (forcing data) and initial conditions. We outline the scientific rationale and assumptions made in specifying these. Notable details of the implementation include an ozone redistribution scheme for prescribed ozone simulations (HadGEM3‐GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in the simulation of background natural vegetation. We discuss the implications of these decisions for interpretation of the simulation results. These simulations are expensive in terms of human and CPU resources and will underpin many further experiments; we describe some of the technical steps taken to ensure their scientific robustness and reproducibility.
Abstract. Recently reported model-measurement discrepancies for the concentrations of the HOx radical species (OH and HO2) in locations characterized by high emission rates of isoprene have indicated possible deficiencies in the representation of OH recycling and formation in isoprene mechanisms currently employed in numerical models; particularly at low levels of NOx. Using version 3.1 of the Master Chemical Mechanism (MCM v3.1) as a base mechanism, the sensitivity of the system to a number of detailed mechanistic changes is examined for a wide range of NOx levels, using a simple box model. The studies consider sensitivity tests in relation to three general areas for which experimental and/or theoretical evidence has been reported in the peer-reviewed literature, as follows: (1) implementation of propagating channels for the reactions of HO2 with acyl and β-oxo peroxy radicals with HO2, with support from a number of studies; (2) implementation of the OH-catalysed conversion of isoprene-derived hydroperoxides to isomeric epoxydiols, as characterised by Paulot et al.~(2009a); and (3) implementation of a mechanism involving respective 1,5 and 1,6 H atom shift isomerisation reactions of the β-hydroxyalkenyl and cis-δ-hydroxyalkenyl peroxy radical isomers, formed from the sequential addition of OH and O2 to isoprene, based on the theoretical study of Peeters et al. (2009). All the considered mechanistic changes lead to simulated increases in the concentrations of OH, with (1) and (2) resulting in respective increases of up to about 7% and 16%, depending on the level of NOx. (3) is found to have potentially much greater impacts, with enhancements in OH concentrations of up to a factor of about 3.3, depending on the level of NOx, provided the (crucial) rapid photolysis of the hydroperoxy-methyl-butenal products of the cis-δ-hydroxyalkenyl peroxy radical isomerisation reactions is represented, as also postulated by Peeters et al.~(2009). Additional tests suggest that the mechanism with the reported parameters cannot be fully reconciled with atmospheric observations and existing laboratory data without some degree of parameter refinement and optimisation which would probably include a reduction in the peroxy radical isomerisation rates and a consequent reduction in the OH enhancement propensity. However, an order of magntitude reduction in the isomerisation rates is still found to yield notable enhancements in OH concentrations of up to a factor of about 2, with the maximum impact at the low end of the considered NOx range. A parameterized representation of the mechanistic changes is optimized and implemented into a reduced variant of the Common Representative Intermediates mechanism (CRI v2-R5), for use in the STOCHEM global chemistry-transport model. The impacts of the modified chemistry in the global model are shown to be consistent with those observed in the box model sensitivity studies, and the results are illustrated and discussed with a particular focus on the tropical forested regions of the Amazon and Borneo where unexpectedly elevated concentrations of OH have recently been reported.
Abstract. Measurements from actinic flux spectroradiometers on board the NASA DC-8 during the Atmospheric Tomography (ATom) mission provide an extensive set of statistics on how clouds alter photolysis rates (J-values) throughout the remote Pacific and Atlantic Ocean basins. ATom made profiling circumnavigations of the troposphere over four seasons during 2016–2018. J-values are a primary chemical control over tropospheric ozone and methane abundances and their greenhouse effects. Clouds have been recognized for more than three decades as being an important factor in tropospheric chemistry. The ATom climatology of J-values is a unique test of how the chemistry models treat clouds. This work focuses on measurements over the Pacific during the first deployment (ATom-1) in August 2016. Nine global chemistry–climate or –transport models provide J-values for the domains measured in ATom-1. We compare mean profiles over a range of cloudy and clear conditions; but, more importantly, we build a statistical picture of the impact of clouds on J-values through the distribution of the ratio of J-cloudy to J-clear. In detail, the models show largely disparate patterns. When compared with measurements, there is some limited, broad agreement. Models here have resolutions of 50–200 km and thus reduce the occurrence of clear sky when averaging over grid cells. In situ measurements also average the scattered sunlight, but only out to scales of 10 s of km. A primary uncertainty remains in the role of clouds in chemistry, in particular, how models average over cloud fields, and how such averages can simulate measurements.
Abstract. The hydroxyl radical (OH) plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a missing OH sink in a variety of regions across the planet. Comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH), with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface, and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, while tropospheric methane lifetime increased by 2 % when the additional OH sink was included. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy radicals (RO2) with OH. While the effects of this chemistry on kOH were minor, the reaction of the simplest peroxy radical, CH3O2, with OH was found to be a major sink for CH3O2 and source of HO2 over remote regions at the surface and in the free troposphere. Inclusion of this reaction in the model increased tropospheric methane lifetime by up to 3 %, depending on its product branching. Simulations based on the latest kinetic and product information showed that this reaction cannot reconcile models with observations of atmospheric methanol, in contrast to recent suggestions.
Abstract. Field campaigns have been carried out with the FAGE (fluorescence assay by gas expansion) technique in remote biogenic environments in the last decade to quantify the in situ concentrations of OH, the main oxidant in the atmosphere. These data have revealed concentrations of OH radicals up to a factor of 10 higher than predicted by models, whereby the disagreement increases with decreasing NO concentration. This was interpreted as a major lack in our understanding of the chemistry of biogenic VOCs (volatile organic compounds), particularly isoprene, which are dominant in remote pristine conditions. But interferences in these measurements of unknown origin have also been discovered for some FAGE instruments: using a pre-injector, all ambient OH is removed by fast reaction before entering the FAGE cell, and any remaining OH signal can be attributed to an interference. This technique is now systematically used for FAGE measurements, allowing the reliable quantification of ambient OH concentrations along with the signal due to interference OH. However, the disagreement between modelled and measured high OH concentrations of earlier field campaigns as well as the origin of the now-quantifiable background OH is still not understood. We present in this paper the compelling idea that this interference, and thus the disagreement between model and measurement in earlier field campaigns, might be at least partially due to the unexpected decomposition of a new class of molecule, ROOOH, within the FAGE instruments. This idea is based on experiments, obtained with the FAGE set-up of the University of Lille, and supported by a modelling study. Even though the occurrence of this interference will be highly dependent on the design and measurement conditions of different FAGE instruments, including ROOOH in atmospheric chemistry models might reflect a missing piece of the puzzle in our understanding of OH in clean atmospheres.
Abstract. A key and expensive part of coupled atmospheric chemistry–climate model simulations is the integration of gas-phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly coupled network of differential equations (DEs). There exist orders of magnitude variability in the lifetimes of the different species present in the atmosphere, and so solving these DEs to obtain robust numerical solutions poses a stiff problem. With newer models having more species and increased complexity, it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy. While a sound way to handle stiff systems is by using implicit DE solvers, the computational costs for such solvers are high due to internal iterative algorithms (e.g. Newton–Raphson methods). Here, we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by blending the existing Newton–Raphson (NR) method with quasi-Newton (QN) methods, whereby the QN routine is called only on selected iterations of the solver. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealised box-model environment and under realistic 3-D atmospheric conditions. The box-model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27 % of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3-D simulations show that our moderate modification, by means of using a blended method for the chemistry solver, speeds up the chemistry routines by around 13 %, resulting in a net improvement in overall runtime of the full model by approximately 3 % with negligible loss in the accuracy. The blended QN method also improves the robustness of the solver, reducing the number of grid cells which fail to converge after 50 iterations by 40 %. The relative differences in chemical concentrations between the control run and that using the blended QN method are of order ∼ 10−7 for longer-lived species, such as ozone, and below the threshold for solver convergence (10−4) almost everywhere for shorter-lived species such as the hydroxyl radical.
Abstract. Naturally produced very short-lived substances (VSLS), like bromocarbons, account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical increase in VSLS on ozone and how that impact depends on the background concentrations of chlorine and bromine. Our model experiments indicate that for a ~5 ppt increase in Bry from VSLS, the local ozone loss in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone loss in the Northern Hemisphere (NH) is smaller (4–6%). There is more ozone loss following an increase in VSLS burden under a high stratospheric chlorine background than under a low chlorine background indicating the importance of the inter-halogen reactions. For example, the rate of decline of the stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~3 ppb (present day) compared with Cly of ~0.8 ppb (apre-industrial or projected future situation). Although bromine plays an important role in destroying ozone, inorganic chlorine is the dominant halogen compound. Even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will be dominated by the recovery of anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recover date could be delayed by approximately 7 years.
Abstract. In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Niño warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important.