Monochromatic infrasound waves are scarcely reported volcanic infrasound signals. These waves have the potential to provide constraints on the conduit geometry of a volcano. However, to further investigate the waves scientifically, such as how the conduit shape modulates the waveforms, we still need to examine many more examples. In this paper, we provide the most detailed descriptions of these monochromatic infrasound waves observed at Aso volcano in Japan. At Aso volcano, a 160-day-long magmatic eruption occurred in 2014–2015 after a 20-year quiescent period. This eruption was the first event that we could monitor well using our infrasound network deployed around the crater. Throughout the entire eruption period, when both ash venting and Strombolian explosions occurred, monochromatic infrasound waves were observed nearly every day. Although the peak frequency of the signals (0.4–0.7 Hz) changed over time, the frequency exhibited no reasonable correlation with the eruption style. The source location of the signals estimated by considering topographic effects and atmospheric conditions was highly stable at the active vent. Based on the findings, we speculate that these signals were related to the resonant frequencies of an open space in the conduit: the uppermost part inside the vent. Based on finite-difference time-domain modeling using 3-D topographic data of the crater during the eruption (March 2015), we calculated the propagation of infrasound waves from the conduit. Assuming that the shape of the conduit was a simple pipe, the peak frequency of the observed waveforms was well reproduced by the calculation. The length of the pipe markedly defined the peak frequency. By replicating the observed waveform, we concluded that the gas exhalation with a gas velocity of 18 m/s occurred at 120 m depth in the conduit. However, further analysis from a different perspective, such as an analysis of the time difference between the arrivals of infrasound and seismic waves, is required to more accurately determine the conduit parameters based on observational data.
Abstract Open-vent volcanoes provide opportunities to perform various methods of observation that can be used to study shallow plumbing systems. The depth of the magma–air interface in the shallow portion of the conduit can be used as an indicator of the volcanic activity of open-vent volcanoes. Although there are many methods used to estimate the depth, most of them cannot constrain the depth to a narrow range due to other unknown parameters. To constrain the depth more accurately, we combine two methods commonly used for estimating the depth of the magma–air interface. They consider the acoustic resonant frequency and the time delay of arrivals between the seismic and infrasound signals of explosions. Both methods have the same unknown parameters: the depth of the magma–air interface and the sound velocity inside the vent. Therefore, these unknowns are constrained so that both the observed resonant frequency and time delay can be explained simultaneously. We use seismo-acoustic data of Strombolian explosions recorded in the vicinity of Aso volcano, Japan, in 2015. The estimated depths and the sound velocities are 40–200 m and 300–680 m/s, respectively. The depth range is narrower than that of a previous study using only the time delay of arrivals. However, only a small amount of the observed data can be used for the estimation, as the rest of the data cannot provide realistic depths or sound velocities. In particular, a wide distribution of the observed time delay data cannot be explained by our simple assumptions. By considering a more complicated environment of explosions, such as source positions of explosions distributed across the whole surface of a lava pond in the conduit, most of the observed data can be used for estimation. This suggests that the factor controlling the observed time delay is not as simple as generally expected. Graphic abstract
Large pyroclasts—often called ballistic projectiles—cause many casualties and serious damage on people and infrastructures. One useful measure of avoiding such disasters is to numerically simulate the ballistic trajectories and forecast where large pyroclasts deposit. Numerical models are based on the transport dynamics of these particles. Therefore, in order to accurately forecast the spatial distribution of these particles, large pyroclasts from the 2015 Aso Strombolian eruptions were observed with a video camera. In order to extrapolate the mechanism of particle transport, we have analyzed the frame-by-frame images and obtained particle trajectories. Using the trajectory data, we investigated the features of Strombolian activity such as ejection velocity, explosion energy, and particle release depth. As gas flow around airborne particles can be one of the strongest controlling factors of particle transport, the gas flow velocities were estimated by comparing the simulated and observed trajectories. The range of the ejection velocity of the observed eruptions was 5.1–35.5 m/s, while the gas flow velocity, which is larger than the ejection velocity, reached a maximum of 90 m/s, with mean values of 25–52 m/s for each bursting event. The particle release depth, where pyroclasts start to move separately from the chunk of magmatic fragments, was estimated to be 11–13 m using linear extrapolation of the trajectories. Although these parabolic trajectories provide us with an illusion of particles unaffected by the gas flow, the parameter values show that the particles are transported by the gas flow, which is possibly released from inside the conduit.
Abstract We tested the performance of an infrasonic array consisting of three microphones with a 20‐m aperture at Stromboli volcano, Italy. There were four active vents separated by ∼10 ∘ . We employed multiple signal classification (MUSIC) to estimate direction of arrival (DOA) of the detected signals. Using test signals of which the source vents were identified by visual observation, the resolution of DOA estimation of MUSIC is compared with those of Capon beamforming, grid search, and semblance. We confirmed that MUSIC and grid search gave better resolution of DOA than the other two methods. Also, MUSIC provided the best resolutions in time and frequency. It was shown that the DOA switched between different vents or fluctuated in short time scales and can vary with frequency, which indicate multiple active sources. Possible DOA estimation errors were evaluated. A small aperture infrasonic array combined with MUSIC will become a powerful tool for studying and monitoring active volcanoes.
Abstract Monitoring the depth of the magma surface at open-vent volcanoes can be a practical tool to infer temporal variations in the magma supply during an eruption. We focus on the magmatic eruption of Aso volcano in 2014–2015 to estimate the temporal change in the depth of the magma surface, and show that this needs to be coupled with an understanding of the shallow conduit geometry if it is to be done in a representative manner. The eruption lasted 5 months from November 2014 and ending with a crater floor collapse in May 2015. During the eruption, we recorded seismo-acoustic waveforms related to frequent Strombolian explosions. The infrasound signals show several distinct peak frequencies derived from acoustic resonance inside the vent. We estimate the depth of the magma surface using the time delay of seismo-acoustic signals and the peak frequency of infrasound signals. In addition, the temporal variation in the shape of the conduit is constrained by the overtone frequency of the acoustic resonance. From the beginning of the eruption to early-January 2015, the magma surface was located at a depth of $\sim $ ∼ 200 m, and the conduit was a cylindrical pipe. Later, between January and February, the magma surface rose to $\sim $ ∼ 120 m, and the shape of the conduit changed to a conical frustum flaring inside. This finding indicates that the magma was injected into the shallow conduit and that it heated and weakened the conduit wall near the magma surface. Before the cessation of the magmatic eruption, the magma surface dropped by approximately 70 m. This magma drainage and, primarily, the instability of the conduit shape caused the crater floor to collapse. We show the possibility of tracking and assessing the depth of the magma surface and the shallow conduit geometry even with limited seismo-acoustic observations.