Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called "ClimGen". A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods.
Abstract. We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.
It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region's local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.). The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation) across the investigated altitudinal gradient (520 m). During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains.
This is the first of a two-part description of a new software tool CRUST (Climatic Research Unit Standardisation of Tree-ring data). This program has been designed primarily to allow the convenient, routine application of "Signal-Free Regional Chronology Standardisation" (SF RCS) to different types of tree-ring data. The program also enables the use of other popular standardisation methods. A series of experiments is described in which the ability of simple RCS and SF RCS to recover known tree-growth forcing signals is tested. In the comparatively rare situation where many sub-fossil data are distributed over a wide time range and there is no slope in the overall common-growth forcing signal, simple RCS is satisfactory. Simple RCS produces distortion in all other examples explored here. SF RCS is superior to simple RCS and in all cases examined. SF RCS works well except when the span of starting dates of sample trees is too narrow, a situation for which a test is available. Based on the results of the tests explored here, we conclude that Signal-Free RCS should be used as the standard method of RCS processing.
Abstract The main components of an atmospheric model for numerical weather prediction are the “dynamical core,” which describes the resolved flow, and the “physical parametrisation,” which capture the effects of non‐fluid and non‐resolved fluid processes. Additionally, models used for air quality or climate applications may include a component that represents the evolution of chemicals and aerosols within the atmosphere. Though, traditionally, all these components use the same mesh with the same grid spacing, we present a formulation for the different components to use a series of nested meshes, with different horizontal grid spacings. This gives the model greater flexibility in the allocation of computational resources, so that resolution can be targeted to those parts that provide the greatest benefits in accuracy. The formulation presented here concerns the methods for mapping fields between meshes and is designed for the compatible finite‐element discretisation used by LFRic‐Atmosphere, the Met Office's next‐generation atmosphere model. Key properties of the formulation include the consistent and conservative transport of tracers on a mesh that is coarser than the dynamical core, and the handling of moisture to ensure mass conservation without generation of unphysical negative values. Having presented the formulation, it is then demonstrated through a series of idealised test cases that show the feasibility of this approach.
Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†
Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other "Old World" climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the "Old World Drought Atlas" (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability.
This repository contains all the tree-ring width chronology and reconstructions data used by Hantemirov et al. (2022) to assess the annually resolved summer temperature of the past 7000 years in Siberia For more information, we refer the user to the readme file entitled "Hantemirov_et_al_NatCom2022_Readme.txt"