This paper presents a method to find the optimal topology, pipe sizing, and operational parameters of a district heating system under consideration of one design point. The current high costs of district heating systems set limits regarding the minimum heat demand density required for economic network expansions. Optimized routing with ideal pipe sizing and optimal operating parameters offers a potential for cost reduction. Therefore, this paper introduces a new two-phase method for district heating network expansion planning. This method consists of consecutive optimizations, starting with a mixed-integer linear programming followed by a nonlinear optimization. During the mixed-integer linear programming, the district heating system is optimized with continuous diameters, and the nonlinear pressure and temperature dependencies must be linearized. The resulting topology and the continuous diameters are afterward handed over to a nonlinear sparse sequential quadratic programming. The continuous diameters are discretized using a numerical continuation strategy that gradually forces the continuous diameter variables into discrete diameter choices. As a proof of concept, the district heating system for a small town with 400 consumers is optimized and analyzed. The two-phase optimization is performed in 251.68 sec, and in most cases, discrete or near discrete diameters are achieved in a nonlinear continuous optimization.
Conventional generation units encounter a changing role in modern societies' energy supply. With increased need for flexible operation, engineers and project managers have to evaluate the benefits of technical improvements. For this purpose, a valuation tool has been developed, comparing economical cornerstones and technical constraints of generation units to European Energy Exchange prices for PHELIX 2014. It enables the user to relate a change in technical parameters to an economic effect and possible revenues. Four different types of conventional power plants are investigated in scenarios with increasing CO2 and fuel prices to determine the impact of different flexibility options. Results show that an increased ramp rate has not the same magnitude of positive economic impact as reduced minimum operation load, based on an observation on a price signal with resolution of fifteen minutes.
Subsurface reservoirs play an important role in decarbonizing the energy sector, be it through geothermal energy production or carbon capture and storage. In recent years, there has been an increasing interest in CO2-Plume Geothermal systems, which combine carbon sequestration with geothermal, using CO2 instead of water as a subsurface heat and pressure energy carrier. Since CO2-Plume Geothermal systems are added to full-scale CO2 Capture and Sequestration operations, all of the initially injected CO2 is ultimately stored. CO2-Plume Geothermal, therefore constitutes of both CO2 Capture Utilization as well as Storage. This paper assesses the huge technical potential of this technology, identifying a potentially highly relevant market for CO2 equipment manufacturers and discusses the current research demand, based on the current state of the art of CO2 equipment. Both temperature and pressure levels are significantly lower than CO2 turbine designs investigated and proposed so far for other applications, such as waste heat recovery. For a depth of 5 km, a typical one-stage radial turbine design might have a rotational speed of 23'000 rpm to 42'000 rpm and an impeller diameter between 96 mm to 155 mm. Together with technology-specific requirements, due to produced fluid impurities, it becomes evident that significant further development efforts are still necessary.
Deep geothermal energy has tremendous potential for decarbonizing the heating sector. However, one common obstacle can be the mismatch between geologically attractive regions in the countryside and urban areas with a high heat demand density, which are therefore attractive for district heating systems. In the last years, an increasing number of regions consider the transport of geothermal heat into urban clusters. One example of such a region is the South German Molasse Basin in Upper Bavaria. However, such heat transport pipelines come along with massive upfront investment costs due to the required large pipe diameter and insulation thickness. While the classic concept foresees the use of water as a heat carrier in such long-distance heat transportation pipelines, CO2 can be an attractive alternative. This study investigates the thermo-economic performance of CO2 as a heat transport carrier for a potential long-distance heat transmission pipeline with a length of 20 km, which could connect a planned geothermal project in the South of Munich with the existing district heating network of Munich. The results of the base case scenario demonstrate that for both heat carrier options water and CO2 rather low LCOH for the transport of the heat can be achieved.
Temperature uniformity is a critical parameter in solid oxide fuel cells (SOFCs) since it directly impacts thermal stress, material degradation and output performance. Effective thermal management typically aims to achieve a minimal temperature gradient, especially within a SOFC stack assembled by numerous single cells. In this study, numerical simulations of various boundary conditions and cell designs are performed to investigate thermal uniformity in methane-rich internal reforming SOFCs, which can be utilized as a guidance for design and operation in practical application. The results indicate that the fuel gas with a 5 % mole fraction of methane is more effective in enhancing thermal uniformity through reforming cooling effect at the electrolyte compared to only a 1 % mole fraction. It is strongly recommended in cell design to maintain the ratio of the cell's length to its width (Rcell) greater than or equal to 1.0 considering its better thermal uniformity. However, both increasing the ratio of channel width to rib width (Rc-r) and decreasing the ratio of channel height to channel width (RH-W) have been demonstrated to deteriorate temperature uniformity. Within this study, increasing the backpressure to 1.5 bar is found to result in a 16.7 % reduction in the maximum temperature difference across the electrolyte when compared to that at atmospheric pressure. It is also advisable to operate at the inlet temperature ranging from 973 K to 1023 K for a more uniform temperature distribution within the SOFC.