Abstract. Precipitation in high-mountain regions is characterized by a strong heterogeneity due to complex interaction between atmospheric circulation and steep topography, however, extremely rare network of high elevation stations hampers the adequate high resolution regional climate modeling. In this study we present new data of precipitation directly measured in high-mountain catchment, on the continental glacier (East Sayan Range, south of East Siberia) during the summer periods of 2015–2017 using automatic weather station. The precipitation record was compared with near located weather stations and ERA Interim and NCEP/NCAR reanalysis data. Precipitation mode similar to the glacier site was found at the stations located west and northwest, while ERA Interim and NCEP/NCAR reanalysis data underestimated the precipitation by 40 % and 70 %, respectively. Atmospheric circulation patterns in days with precipitation were analyzed by using mean sea level pressure, geopotential height at 700 and 500 hPa and classification of macro scale atmospheric processes of the Northern Hemisphere by Dzerdzeevskii. Summer precipitation was mostly associated with meridional southern group of large scale circulation the Northern Hemisphere, while at synoptic scale it basically fell in cyclonic (49 % of precipitation) and low-gradient cyclonic (30 %) baric fields. Six typical atmospheric circulation patterns over the East Sayan were identified for days with precipitation. The sources and atmospheric moisture transfer to the glacier was defined by using the HYSPLIT trajectory model. The most of summer precipitation (70 %) was related with western cyclones, while about 25 % of rainfalls (mainly of moderate to strong intensity) was originated from the south-east (Pacific monsoon influence).
<p>The energy balance of a glacial surface and its melting is strongly controlled by altering synoptic processes in the lower troposphere. Therefore, classification of the processes of atmospheric circulation over the glaciarized regions is very important for better understanding of long-term trends in glacier changes. The glaciers of the Kodar Ridge (south Eastern Siberia) have shrunk in area by about 60% since the mid-19th century, with the largest decline taking place at the end of the 20th century. We have compiled the daily catalog of the weather types (WTs) from 1970 to 2020 based on the Jenkinson and Collison objective classification applied for the area (47.5&#8211;67.5&#176; N, 102.5&#8211;132.5&#176; E) centered over the Kodar Ridge. The gridded sea level pressure (SLP) and isobaric 700 hPa data was obtained from the National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) reanalysis. In total, 26 WTs were identified and the frequency of different synoptic types was statistically analyzed. The most frequent group of WTs is advective (40%), followed by anticyclonic (34%) and cyclonic (14%). The unclassified type totally accounts for 13%. We revealed the differences between the frequency of synoptic processes in seasonal cycle and at different atmospheric levels (SLP and 700 hPa). Cyclonic weather types usually prevail in summer, while anticyclonic ones in autumn and winter. At 700 hPa level, the frequency of anticyclonic WTs increases in summer, while the frequency of advective types increases in all seasons. Over the past 50 years, the frequency of anticyclonic types demonstrates decreasing trend, while that of cyclonic and advective weather types increased (SLP data). In the 1980s and early 1990s the frequency of cyclonic WTs decreased, which could lead to a decrease in cloud cover over the Kodar region and an increase in net radiation of glacier surfaces. This study was supported by the Russian Foundation for Basic Research (project No. 19-05-00668).</p>
East Siberia is a large region extending from Mongolia to the Arctic seas. The main atmosphere circulations of the Northern Hemisphere (the Northern Atlantic, Arctic and East Asia Oscillations) appear in this region. In addition, Lake Frolikha is situated at 55N, and the high latitude area is probably sensitive to variation in insolation and solar activity. Therefore, even minor shifts of the global climate may cause drastic climate changes within the study area. We analysed diatoms and mineralogical records of sediment core from Lake Frolikha situated near Lake Baikal. We interpreted these records in terms of the changing regional temperature, precipitation, vegetation and lake bio-productivity.
Abstract. Detailed volcanic record of the last 900 yr (1093–2010 AD) has been received using high resolution (2–3 samples per accumulation year) sulfate measurements in four snow/firn cores from the Vostok station area, East Antarctica. Totally, 33 volcanic events have been identified in the record, including well-known low latitude eruption signals found in many polar ice cores (e.g., Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452), however in comparison with other Antarctic sites the record has more events covering the last 900 yr. The strongest volcanic signals occurred during mid-13th, mid-15th and 18th centuries. The largest volcanic signal of Vostok (both in sulfate concentration and flux) is the 1452 AD Kuwae eruption. Average snow accumulation rate calculated for the period 1093–2010 AD is 21.3 ± 2.3 mm H2O. Accumulation record demonstrates a slight positive trend, however sharply increased accumulation rate during the periods from 1600 to 1815 AD (by 11% from long-term mean) and from 1963 to 2010 AD (by 15%) are typical features of the site. Na+ record shows strong decadal-scale variability probably connected with coupled changes in atmospheric transport patterns over Antarctica (meridional circulation change) and local glaciology. The obtained high resolution climatic records suggest a high sensitivity of the Vostok location to environmental changes in Southern Hemisphere.
Spatial and temporal variability of a sea‑salt aerosol (Na+) concentration was investigated in snow‑firn cores and snow pits taken at four sites of the Indian Ocean sector of the East Antarctica (along a profile between stations Progress and Vostok: PV‑10, NVFL‑1, SW‑42, and the Vostok point). In long annually resolved Na+ records, we had revealed the following periodicities: 17 to 95‑year (Vostok) and 29 to 52‑year (NVFL‑1), while the shorter records are characterized by 8‑year periodicity. The Na+ concentrations decrease as the snow accu‑ mulation increases (especially, at the Vostok station), and this is evidence for a presence of «dilution effect» in the sites with the great part of «dry precipitation». The closest relationship was revealed between changes in flows of Na+ at points SW‑42, and PV‑10. Variability of the Na+ fluxes had been linked to the circulation indices (AAO, PDO, SOI, MEI, SPO) and the sea level pressure in the Southern Hemisphere, as well as to occurrence of Elementary Circulation Mechanisms (ECM). The revealed irregularity of the Na+ precipitation over the area under investigation is caused by different atmospheric circulation patterns as well as by influ‑ ence of basic Action Centers of the Atmosphere (ACA) in the Southern Hemisphere. The closest relationship is found to take place with South Pacific ACA (Vostok, 1976–2009) and with the South Indian ACA (SW‑42 and PV‑10). A presence of distant atmospheric relations (including one with El Nino) had been revealed for the inland areas. Changes in features of the atmospheric circulation in the South Indian Ocean over the last 200‑year period have been reconstructed on the basis of summarized Na+ records from the Vostok station area. Distinctive feature of the atmospheric circulation is the 40‑year periodicity with its increasing intensity during the following periods: 1805–1820, 1830–1860, 1890–1900, 1940–1950, and 1980–2000. In addition, we had revealed that changes in the atmospheric circulation in the Indian Ocean (Southern Hemisphere) were synchronous with similar variability of the circulation in the Siberian (Northern Hemisphere) sector.
The interaction between climate and cryosphere is a key issue in recent years. Changes in surface mass balance of mountain glaciers closely correspond to differential changes in atmospheric circulation. Mountain glaciers in southeast Siberia located on East Sayan, Baikalsky and Kodar ridges have been continuously shrinking since the end of the Little Ice Age. In this study we used daily synoptic weather maps (Irkutsk Center of Hydrometeorology and Environmental Monitoring), 500 hPa, 700 hPa and 850 hPa geopotential height and air temperature data of NCEP/NCAR reanalysis to assess relationships between atmospheric circulation patterns and the sum of positive temperature (SPT), a predictor of summer ice/snow ablation. Results show that increased SPT (ablation) is generally associated with anticyclones and anticyclonic pressure fields (with cloudless weather conditions) and warm atmospheric fronts. Decreased SPT (ablation) is strongly correlated with cyclones and cyclonic type pressure fields, cold atmospheric fronts and air advections. Significant correlations have been found between ablation and cyclonic/anticyclonic activity. Revealed decreasing trends in the SPT in three glaciarized ridges at the beginning of the 21st century led to changes of air temperature and snow/ice melt climates.
Abstract. In January of 2008, during the 53rd Russian Antarctic Expedition, surface snow samples were taken from 13 shallow (0.7 to 1.5 m depth) snow pits along the first tractor traverse from Progress to Vostok stations, East Antarctica. Sub-surface snow/firn layers are dated from 2.1 to 18 yr. The total length of the coast to inland traverse is more than 1280 km. Here we analysed spatial variability of concentrations of sulphate ions and elements and their fluxes in the snow deposited within the 2006–2008 time interval. Anions were analysed by high-performance liquid chromatography (HPLC), and the determination of selected metals, including Na, K, Mg, Ca and Al, was carried out by mass spectroscopy with atomization by induced coupled plasma (ICP-MS). Surface snow concentration records were examined for trends versus distance inland, elevation, accumulation rate and slope gradient. Na shows a significant positive correlation with accumulation rate, which decreases as distance from the sea and altitude increase. K, Ca and Mg concentrations do not show any significant relationship either with distance inland or with elevation. Maximal concentrations of these elements with a prominent Al peak are revealed in the middle part of the traverse (500–600 km from the coast). Analysis of element correlations and atmospheric circulation patterns allow us to suggest their terrestrial origin (e.g. aluminosilicates carried as a continental dust) from the Antarctic nunatak areas. Sulphate concentrations show no significant relationship with distance inland, elevation, slope gradient and accumulation rate. Non-sea salt secondary sulphate is the most important contribution to the total sulphate budget along the traverse. Sulphate of volcanic origin attributed to the Pinatubo eruption (1991) was revealed in the snow pit at 1276 km (depth 120–130 cm).