Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.
Reliance on the marine environment for the provision of food is ever-increasing, but future climate change threatens production. Despite this concern, the impact on seafood quality and success of the seafood industry is unknown. Using a short-term study, we test these concerns using a major aquaculture species – Crassostrea gigas – exposing them to three acidification and warming scenarios: 1) ambient pCO2 (~400 ppm) & control temperature (15°C) 2) ambient pCO2 (~400 ppm) & elevated temperature (20°C), 3) elevated pCO2 (~1000 ppm) & elevated temperature (20°C). Oyster quality was assessed by scoring appearance, aroma, taste, and overall acceptability. A panel of five experts was asked to score nine oysters – three from each treatment – according to agreed criteria. Results indicate that these levels of acidification and warming did not significantly alter the sensory properties of C. gigas, and notably the overall acceptability remained unchanged. Non-statistically supported trends suggest that several sensory attributes – opacity, mouthfeel, aspect of meat, shininess, meat resistance, meat texture, and creaminess – may improve under acidification and warming scenarios. These findings can be considered positive for the future of the aquaculture and food sectors. Crassostrea gigas therefore is expected to remain a key species for food security that is resilient to climate change, whilst retaining its valuable attributes.
In the marine environment, greening of grey infrastructure (GGI) is a rapidly growing field that attempts to encourage native marine life to colonize marine artificial structures to enhance biodiversity, thereby promoting ecosystem functioning and hence service provision. By designing multifunctional sea defences, breakwaters, port complexes and off-shore renewable energy installations, these structures can yield myriad environmental benefits, in particular, addressing UN SDG 14: Life below water. Whilst GGI has shown great promise and there is a growing evidence base, there remain many criticisms and knowledge gaps, and some feel that there is scope for GGI to be abused by developers to facilitate harmful development. Given the surge of research in this field in recent years, it is timely to review the literature to provide an update update on the state-of-the-art of the field in relation to the many criticisms and identify remaining knowledge gaps. Despite the rapid and significant advances made in this field, there is currently a lack of science and practice outside of academic sectors in the developed world, and there is a collective need for schemes that encourage intersectoral and transsectoral research, knowledge exchange, and capacity building to optimize GGI in the pursuit of contributing to sustainable development.
Ocean acidification and warming (OAW) pose a threat to marine organisms, with particular negative effects on molluscs, and can jeopardize the provision of associated ecosystem services. As predation is an important factor shaping populations in the marine environment, the ability of organisms to retain traits valuable in predation resistance under OAW may be decisive for future population maintenance. We examine how exposure to seawater temperature (control: 16.8°C and warm: 20°C) and atmospheric p CO 2 (ambient [~400], ~750, and ~1000 ppm) conditions affects traits linked to predation resistance (adductor muscle strength and shell strength) in two ecologically and economically important species of oysters ( Magallana gigas and Ostrea edulis ) and relate them to changes in morphometry and fitness (condition index, muscle and shell metrics). We show that O. edulis remained unimpacted following exposure to OAW scenarios. In contrast, the adductor muscle of M. gigas was 52% stronger under elevated temperature and ~750 ppm p CO 2 , and its shell was 44% weaker under combined elevated temperature and ~1000 ppm p CO 2. This suggests greater resistance to mechanical predation toward the mid-21 st century, but greater susceptibility toward the end of the century. For both species, individuals with more somatic tissue held an ecological advantage against predators; consequently, smaller oysters may be favoured by predators under OAW. By affecting fitness and predation resistance, OAW may be expected to induce shifts in predator-prey interactions and reshape assemblage structure due to species and size selection, which may consequently modify oyster reef functioning. This could in turn have implications for the provision of associated ecosystem services.
Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society.
Negative impacts of global climate change are predicted for a range of taxa. Projections predict marked increases in sea surface temperatures and ocean acidification (OA), arguably placing calcifying organisms at most risk. While detrimental impacts of environmental change on the growth and ultrastructure of bivalve mollusc shells have been shown, rapid and diel fluctuations in pH typical of coastal systems are often not considered. Mytilus edulis, an economically important marine calcifier vulnerable to climate change, were exposed to current and future ocean acidification (380 ppm and 1000 ppm pCO2), warming (17°C; 20°C), and ocean acidification and warming (OAW) scenarios in a seawater system incorporating natural fluctuations in pH. Both macroscopic morphometrics (length, width, height, volume) and microscopic changes in the crystalline structure of shells (ultrastructure) using electron backscatter diffraction (EBSD) were measured over time. Increases in seawater temperature and OAW scenarios led to increased and decreased shell growth respectively and on marginal changes in cavity volumes. Shell crystal matrices became disordered shifting toward preferred alignment under elevated temperatures indicating restricted growth, whereas Mytilus grown under OAW scenarios maintained single crystal fabrics suggesting OA may ameliorate some of the negative consequences of temperature increases. However, both elevated temperature and OAW led to significant increases in crystal size (grain area and diameter) and misorientation frequencies, suggesting a propensity toward increased shell brittleness. Results suggest adult Mytilus may become more susceptible to biological determinants of survival in the future, altering ecosystem structure and functioning.
This volume has achieved a large coverage of the experimentally well-studied areas of the temperate and subtropical coasts of the world (see Figure 1.1) – venturing into the tropics in some regions (Chapter 14, South-East Asia) and including mangroves (Chapter 17). Coral reef systems have not been considered. Much of the emphasis has been on rocky habitats as this is where the majority of experimental work on interactions has been done (but see Chapter 6). As well as reviewing regions where there has been a long history of experimental research (e.g., Chapters 2–4, 6, 10, 11, 13, 15, 16), areas of emerging experimental research in the last twenty-five years (e.g., Chapter 8, western Mediterranean; Chapter 12, south-east Pacific) and understudied regions (e.g., Chapter 7, Argentina; Chapter 14, South-East Asia) have also been included, allowing more comprehensive insights into the processes important for shaping these communities. In this short synthesis chapter, we first consider the main processes determining patterns covered by the previous chapters. We then consider major human impacts in these regions. Finally, we identify gaps in knowledge and make some suggestions for the way forward. We make the case for combining phylogeographic studies with macro-ecology and biogeography, coupled with well-designed hypothesis testing experiments, to better understand processes generating patterns on micro-evolutionary (hundreds to thousands of years) and ecological (up to hundreds of years) time scales.