Evapotranspiration (ET) is a crucial part of commercial grapevine production in California, and the partitioning of this quantity allows the separate assessment of soil and vine water and energy fluxes. This partitioning has an important role in agriculture since it is related to grapevine stress, yield quality, irrigation efficiency, and growth. Satellite remote sensing-based methods provide an opportunity for ET partitioning at a subfield scale. However, medium-resolution satellite imagery from platforms such as Landsat is often insufficient for precision agricultural management at the plant scale. Small, unmanned aerial systems (sUAS) such as the AggieAir platform from Utah State University enable ET estimation and its partitioning over vineyards via the two-source energy balance (TSEB) model. This study explores the assessment of ET and ET partitioning (i.e., soil water evaporation and plant transpiration), considering three different resistance models using ground-based information and aerial high-resolution imagery from the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). We developed a new method for temperature partitioning that incorporated a quantile technique separation (QTS) and high-resolution sUAS information. This new method, coupled with the TSEB model (called TSEB-2TQ), improved sensible heat flux (H) estimation, regarding the bias, with around 61% and 35% compared with the H from the TSEB-PT and TSEB-2T, respectively. Comparisons among ET partitioning estimates from three different methods (Modified Relaxed Eddy Accumulation—MREA; Flux Variance Similarity—FVS; and Conditional Eddy Covariance—CEC) based on EC flux tower data show that the transpiration estimates obtained from the FVS method are statistically different from the estimates from the MREA and the CEC methods, but the transpiration from the MREA and CEC methods are statistically the same. By using the transpiration from the CEC method to compare with the transpiration modeled by different TSEB models, the TSEB-2TQ shows better agreement with the transpiration obtained via the CEC method. Additionally, the transpiration estimation from TSEB-2TQ coupled with different resistance models resulted in insignificant differences. This comparison is one of the first for evaluating ET partitioning estimation from sUAS imagery based on eddy covariance-based partitioning methods.
Abstract. Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (≤ 10 m) and plant canopy (≤ 1 m) scale evapotranspiration (ET) monitoring. In this study, high-resolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EF = LE/(H + LE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in daily water use estimates for these 2 days for the vineyards. Model sensitivity analysis demonstrated the high degree of sensitivity of the TSEB model to the accuracy of the TR data, while the DATTUTDUT model was insensitive to systematic errors in TR as is the case with contextual-based models. However, it is shown that the study domain and spatial resolution will significantly influence the ET estimation from the DATTUTDUT model. Future work is planned for developing a hybrid approach that leverages the strengths of both modeling schemes and is simple enough to be used operationally with high-resolution imagery.
Abstract Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.
Remote sensing estimation of evapotranspiration (ET) directly quantifies plant water consumption and provides essential information for irrigation scheduling, which is a pressing need for California vineyards as extreme droughts become more frequent. Many ET models take satellite-derived Leaf Area Index (LAI) as a major input, but how uncertainties of LAI estimations propagate to ET and the partitioning between evaporation and transpiration is poorly understood. Here we assessed six satellite-based LAI estimation approaches using Landsat and Sentinel-2 images against ground measurements from four vineyards in California and evaluated ET sensitivity to LAI in the thermal-based two-source energy balance (TSEB) model. We found that radiative transfer modeling-based approaches predicted low to medium LAI well, but they significantly underestimated high LAI in highly clumped vine canopies (RMSE ~ 0.97 to 1.27). Cubist regression models trained with ground LAI measurements from all vineyards achieved high accuracy (RMSE ~ 0.3 to 0.48), but these empirical models did not generalize well between sites. Red edge bands and the related vegetation index (VI) from the Sentinel-2 satellite contain complementary information of LAI to VIs based on near-infrared and red bands. TSEB ET was more sensitive to positive LAI biases than negative ones. Positive LAI errors of 50% resulted in up to 50% changes in ET, while negative biases of 50% in LAI caused less than 10% deviations in ET. However, even when ET changes were minimal, negative LAI errors of 50% led to up to a 40% reduction in modeled transpiration, as soil evaporation and plant transpiration responded to LAI change divergently. These findings call for careful consideration of satellite LAI uncertainties for ET modeling, especially for the partitioning of water loss between vine and soil or cover crop for effective vineyard irrigation management.