Nowadays, how to achieve both high dimethyldichlorosilane selectivity and silicon conversion in the Rochow reaction still remains a major challenge in the organosilane industry, in which silicon and chloromethane are converted into methylchlorosilanes on Cu-based catalysts mixed with ZnO promoter. Therefore, this calls for the development of outstanding catalysts with both high activity and selectivity for the Rochow reaction and also for a deep fundamental understanding of the catalytic mechanism. In this work, we designed and synthesized a series of copper oxide–zinc oxide catalysts ((CuO)xZnO (0 ≤ x ≤ 49)) with a distinct porous hollow spherical structure for the reaction. These porous hollow spherical catalysts composed of CuO and ZnO nanoparticles were prepared through co-adsorption of Cu2+ and Zn2+ in the interior and outer surfaces of the hydrothermally synthesized carbonaceous spheres, followed by a new hydrothermal treatment and calcination in air. The catalytic properties of the (CuO)xZnO hollow spheres for dimethyldichlorosilane synthesis via the Rochow reaction was investigated, and a deeper understanding of the catalytic mechanism was obtained. As compared to pure CuO hollow spheres, the prepared (CuO)19ZnO hollow spheres exhibited much higher dimethyldichlorosilane selectivity and silicon conversion, which are clearly related to the synergistic electronic effect between Cu and ZnO and to the distinct catalyst structures which allow intimate contact of the reactant molecules with the active component and the efficient transport of the molecules. This work opens a new way for the fabrication of efficient and integrated Cu-based catalysts for the Rochow reaction.
Abstract Single-atom catalysts are of great interest because they can maximize the atom-utilization efficiency and generate unique catalytic properties; however, much attention has been paid to single-site active components, rarely to catalyst promoters. Promoters can significantly affect the activity and selectivity of a catalyst, even at their low concentrations in catalysts. In this work, we designed and synthesized CuO catalysts with atomically dispersed co-promoters of Sn and Zn. When used as the catalyst in the Rochow reaction for the synthesis of dimethyldichlorosilane, this catalyst exhibited much-enhanced activity, selectivity and stability compared with the conventional CuO catalysts with promoters in the form of nanoparticles. Density functional theory calculations demonstrate that single-atomic Sn substitution in the CuO surface can enrich surface Cu vacancies and promote dispersion of Zn to its atomic levels. Sn and Zn single sites as the co-promoters cooperatively generate electronic interaction with the CuO support, which further facilitates the adsorption of the reactant molecules on the surface, thereby leading to the superior catalytic performance.
Abstract A main obstacle in the rational development of heterogeneous catalysts is the difficulty in identifying active sites. Here we show metal/oxide interfacial sites are highly active for the oxidation of benzyl alcohol and other industrially important primary alcohols on a range of metals and oxides combinations. Scanning tunnelling microscopy together with density functional theory calculations on FeO/Pt(111) reveals that benzyl alcohol enriches preferentially at the oxygen-terminated FeO/Pt(111) interface and undergoes readily O–H and C–H dissociations with the aid of interfacial oxygen, which is also validated in the model study of Cu 2 O/Ag(111). We demonstrate that the interfacial effects are independent of metal or oxide sizes and the way by which the interfaces were constructed. It inspires us to inversely support nano-oxides on micro-metals to make the structure more stable against sintering while the number of active sites is not sacrificed. The catalyst lifetime, by taking the inverse design, is thereby significantly prolonged.
Developing high-performance Pt-based catalysts with low Pt loading is crucial but challenging for CO oxidation at temperatures below 100 °C. Herein, we report a Pt-based catalyst with only a 0.15 wt% Pt loading, which consists of Pt-Ti intermetallic single-atom alloy (ISAA) and Pt nanoparticles (NP) co-supported on a defective TiO