Bangladesh’s heavy minerals deposits in river systems remain largely unexplored with past research restricted to beach placer deposits along the south-eastern coastline of the country. In this study, 64 samples were collected from stable sand bars from the northern Brahmaputra River. The average total heavy minerals (THM) from all sample sites was 10.73 wt%, with the THM concentrations generally highest at the outermost edges of the river and lowest within the mid-channel regions. There was no variation in THM content from north (upstream) to south (downstream). Valuable heavy minerals (VHMs) magnetite, ilmenite, garnet and zircon made up around 25–30 wt% of the THM content, with other heavy minerals including amphibole, pyroxene, kyanite, sillimanite, monazite, apatite and xenotime making up the remaining 70–75 wt%. A VHM distribution map showed that the upstream division of the studied area appeared to be the most prospective for valuable heavy minerals. A bench scale heavy mineral sands beneficiation flowsheet involving unit processes employing gravity, magnetic and electrostatic properties was designed and based on a detailed characterisation and phase analysis of the resulting fractions, it was determined that VHMs made up ~2 wt% of the material recovered. Of these, garnet and ilmenite made up the bulk of the VHMs at levels of 0.88 and 0.51 wt%, respectively, with recoveries of >83%. Characterisation of the concentrates showed that further refinement of the processing conditions is required to generate concentrates that are potentially suitable for commercial applications.
A study into the possible separation of feldspar from quartz in a Bangladesh river sand sample was undertaken with the aim of producing a high-grade quartz product for potential use in glassmaking. Flotation was used to upgrade two river sand concentrates, with sizings of +250 µm and −250 µm, from the Brahmaputra River. Feldspar was floated from quartz using dodecylamine as collector in an acidic circuit at pH 2–2.5 after a mica prefloat. For the −250 µm fraction, the best quality quartz product assayed 96.8 wt% SiO2 and 1.95 wt% Al2O3 with 46.7 wt% of the feed quartz recovered at a quartz content of 89.1 wt% quartz. A test on the +250 µm fraction, which was firstly ground then deslimed at 50 µm before mica and feldspar flotation stages, produced a quartz product assaying 99.5 wt% SiO2 and only 0.3 wt% Al2O3 with a quartz content of 98 wt%.