Abstract To help resolve current controversies surrounding the fundamental question of synchrony between end-Permian mass extinction on land and in the sea, we examined the marine Permian–Triassic reference section at Meishan (southeastern China) for land-derived molecular degradation products of pentacyclic triterpenoids with oleanane carbon skeletons, diagnostic for the Permian plant genus Gigantopteris. We identified a continuous quantitative record of mono-aromatic des-A-oleanane, which abruptly ends in the main marine extinction interval just below the Permian-Triassic boundary. This taxon-specific molecular biomarker, therefore, reveals in unmatched detail the timing and tempo of the demise of one of the most distinctive Permian plants and provides evidence of synchronous extinction among continental and marine organisms. Parallel reduction in the relative abundance of lignin phenols confirms that aridity-driven extinction was not restricted to Gigantopteris but likely affected the entire wetland flora of the equatorial South China microcontinent.
The efficient construction of enantiomerically enriched molecules from simple starting materials via catalytic asymmetric synthesis strategies is a key challenge in synthetic chemistry. Metallated azomethine ylides are commonly-used synthons for the preparation of N-heterocycles and α-amino acids. Remarkably, to date, the utilization of azomethine ylides for the facile access to chiral amines has proven elusive. Here, we report that a synergistic Cu/Ir-catalytic system combined with careful tuning of the steric congestion can be used to convert aldimine esters to a variety of chiral homoallylic amines via a cascade allylation/2-aza-Cope rearrangement. The elucidation of the distinct effects of each stereogenic center of the allylation intermediates on the stereochemical outcome and chirality transfer in the rearrangement further guided the selection of catalysts combination.