The structural style of the High Atlas fold and thrust belt is controlled by precursor diapirs that initiated during preorogenic rifting episodes. In this work, we document and interpret the geometry and the along-strike variation of salt tectonic features on a particularly well-exposed salt ridge (the Aberdouz salt wall) that records tectonic evolution for linear diapiric structures from an extensional to contractional regime. The Aberdouz salt wall, cored by Triassic Keuper salt, was created during the Jurassic rifting of the Atlas domain, and was subsequently shortened during Cenozoic mountain building. The study presented is based on field observations, including geological mapping, definition of syn-growth stratigraphy, and the construction of serial cross-sections and sequential restorations.The Aberdouz salt ridge trends ENE-WSW, is ca. 38 km long and is flanked by minibasins containing Jurassic growth strata up to 5 km thick. The minibasin fill displays a deepening to shallowing upward facies trend, from shallow water carbonates in the lower Lias, calciturbidites and shales (with marginal reefs) during the upper Lias-Dogger, grading finally into terrestrial red beds in the Bathonian-Callovian. Tectonosedimentary relationships indicate salt migration during deposition of the entire Jurassic megasequence. Although this sequence is modulated by salt withdrawal in depocenters, the general trend is governed by regional subsidence events in the Atlas rift. Lower sedimentation rates or interruptions during early Bajocian time are marked by synchronous salt-sheet extrusion on both diapir flanks, overlapped by condensed-fauna intervals.The Aberdouz diapiric core is welded in many places along the length of the ridge, but is still partly open where inclusions (Triassic basalts, Jurassic carbonates or late Jurassic gabbro-syenite bodies) prevented complete welding. Keuper red-green shale and gypsum is locally preserved, but halite is never exposed. The absence of metamorphic aureoles around the gabbro-syenite plutons suggests magmatic intrusion into weak salt-rich Keuper bodies, which were subsequently expelled during the Cenozoic shortening. Steeply upturned stratal panels flanking the diapirs or welds contain homoclinal, near-isopachous, but thickened Jurassic sequences concordant with the Triassic, indicating original deposition on the minibasin floor followed by upthrust and rotation to a diapir-flanking position. In contrast, diapiric stocks oriented transverse and splaying from the main salt wall preserve halokinetic sequences and along-strike turtle structures, indicating they have experienced less distortion and stratal rotation during Cenozoic shortening.Finally, the Aberdouz ridge offers the opportunity to study salt wall terminations, which are different from each other: at one end of the diapir, the termination is marked by a large Q-tip stock (with inclusions) and at the other end the salt wall and megaflap are terminated against by a sharp tear fault.
Abstract Minibasin provinces are widespread and can be found in all types of salt tectonic settings, many of which are prone to shortening. Previous studies of how minibasin provinces shorten assume that the salt between the minibasins is homogeneous and that the base of salt is flat or of low relief, such that minibasins are free to move laterally. Here we investigate how minibasin provinces respond to shortening when the lateral mobility of the minibasins is restricted by intra-salt sediment bodies, in order to gain a greater understanding of the controls on the structural styles and modes of tectono-stratigraphic evolution exhibited in minibasin provinces. We examine a borehole-constrained, 3D seismic reflection dataset from the SE Precaspian Basin (onshore western Kazakhstan). The study area is characterised by large, supra-salt minibasins and an array of smaller intra-salt sediment packages distributed between these larger minibasins. We first outline the evidence of episodic shortening between the Late Triassic and present, after the onset of supra-salt minibasin subsidence. Next, we document spatial variations in shortening style, showing how these relate to the concentration of intra-salt sediment packages. Finally, we develop synoptic models showing how intra-salt sediment packages influence both the lateral mobility of minibasins during shortening and the resultant structural style, and we compare and contrast our findings with existing models and other natural examples of shortened minibasin provinces. We conclude that minibasin provinces may have different degrees of lateral mobility depending on the presence, or absence, of intrasalt barriers, and that these variations provide a first-order control on basin-shortening style and tectono-stratigraphic evolution.
Salt-detached gravity-gliding/spreading systems having a rugose base-of-salt display complex strain patterns. However, little was previously known about how welding of supra-salt minibasins to the sub-salt may influence both the downslope translation of minibasins on salt-detached slopes and the regional pattern of supra-salt strain. Using a regional 3D seismic reflection data set, we examine a large salt-stock canopy system with a rugose base on the northern Gulf of Mexico slope, on which minibasins both subside and translate downslope. Some minibasins are welded at their bases, and others are not. We suggest that basal welds obstruct downslope translation of minibasins and control regional patterns of supra-canopy strain. The distribution of strain above the canopy is complex and variable. Each minibasin that becomes obstructed modifies the local strain field, typically developing a zone of shortening immediately updip and an extensional breakaway zone immediately downdip. This finding is corroborated by observations from a physical sandbox model of minibasin obstruction. We also find in our natural example that minibasins can be obstructed to different degrees, ranging from severe (e.g. caught in a feeder) to mild (e.g. welded to a flat or gently-dipping base-of-salt). By mapping both the presence of obstructed minibasins, and the relative degree of minibasin obstruction, we provide an explanation for the origin of complex 3-D strain fields on a salt-detached slope and, potentially, a mechanism that explains differential downslope translation of minibasins. In minibasin-rich salt-detached slope settings, our results may aid: i) structural restorations and regional strain analyses; ii) prediction of subsalt relief in areas of poor seismic imaging; and iii) prediction of stress fields and borehole stability. Our findings are applicable to other systems detached on allochthonous salt sheets (e.g. Gulf of Mexico; Scotian Margin, offshore eastern Canada), as well as systems where the salt is autochthonous but has significant local basal relief (e.g. Santos Basin, offshore Brazil; Kwanza Basin, Angola).
Abstract In order to understand the interactions between surface processes and multilayer folding systems, we here present fully coupled three‐dimensional numerical simulations. The mechanical model represents a sedimentary cover with internal weak layers, detached over a much weaker basal layer representing salt or evaporites. Applying compression in one direction results in a series of three‐dimensional buckle folds, of which the topographic expression consists of anticlines and synclines. This topography is modified through time by mass redistribution, which is achieved by a combination of fluvial and hillslope erosion, as well as deposition, and which can in return influence the subsequent deformation. Model results show that surface processes do not have a significant influence on folding patterns and aspect ratio of the folds. Nevertheless, erosion reduces the amount of shortening required to initiate folding and increases the exhumation rates. Increased sedimentation in the synclines contributes to this effect by amplifying the fold growth rate by gravity. The main contribution of surface processes is rather due to their ability to strongly modify the initial topography and hence the initial random noise, prior to deformation. If larger initial random noise is present, folds amplify faster, which is consistent with previous detachment folding theory. Variations in thickness of the sedimentary cover (in one or two directions) also have a significant influence on the folding pattern, resulting in linear, large aspect ratio folds. Our simulation results can be applied to folding‐dominated fold‐and‐thrust belt systems, detached over weak basal layers, such as the Zagros Folded Belt.
In salt-detached gravity-gliding/spreading systems the detachment geometry is a key control on the downslope mobility of the supra-salt sequence. Here we used regional 3D seismic data to examine a salt-stock canopy in the northern Gulf of Mexico slope, in an area where supra-canopy minibasins subsided vertically and translated downslope above a complex base-of-salt. If thick enough, minibasins can interact with, and weld to, the base-of-salt and be obstructed from translating downslope. Based on the regional maps of the base of allochthonous salt and the base of the supra-canopy sequence, the key controls on minibasin obstruction, we distinguished two structural domains in the study area: a highly obstructed domain and a highly mobile domain. Large-scale translation of the supra-canopy sequence is recorded in the mobile domain by a far-travelled minibasin and a ramp syncline basin. These two structures suggest downslope translation on the order of 40 km from Plio-Pleistocene to Present. In contrast, translation was impeded in the obstructed domain due to supra-canopy bucket minibasins subsiding into feeders during the Pleistocene. As a result, we infer that differential translation occurred between the two domains and argue that a deformation area between two differentially translating supra-canopy minibasin domains is difficult to recognize. However, characterizing domains according to base-of-salt geometry and supra-canopy minibasin configuration can be helpful in identifying domains that may share similar subsidence and downslope translation histories.
Stratal geometries of salt-floored minibasins provide a record of the interplay between minibasin subsidence and sedimentation. Minibasin subsidence and resulting stratal geometries are frequently interpreted by considering the minibasins in isolation and implicitly assuming that internal geometries are the result of purely vertical halokinetic processes. However, minibasins rarely form in isolation and may record complex subsidence histories even in the absence of lateral tectonic forces. In this study we use numerical models to investigate how minibasins subside in response to density-driven downbuilding. We show that minibasins subsiding in isolation result in simple symmetric minibasins with relatively simple internal stratigraphic patterns. In contrast, where minibasins form in closely spaced arrays and subside at different rates, minibasins can kinematically interact due to complex patterns of flow in the encasing salt, even during simple density-driven subsidence. More specifically, we show that minibasins can: 1) prevent nearby minibasins from subsiding; 2) induce lateral translation of nearby minibasins; and 3) induce tilting and asymmetric subsidence of nearby minibasins. We conclude that even in areas where no regional or dominant salt flow regime exists, minibasins can still be genetically related and that minibasin subsidence histories cannot be fully understood if considered in isolation.
G. Casini* (StatoilHydro Research Center), J. Verges (Institute of Earth Sciences), I. Romaire (Institute of Earth Sciences), N. Fernandez (Institute of Earth Sciences), E. Casciello (Institute of Earth Sciences), S. Homke (StatoilHydro Research Center), E. Saura (StatoilHydro Research Center), J.C. Embry (StatoilHydro Research Center), D.W. Hunt (StatoilHydro Research Center), P. Gillespie (StatoilHydro), L. Aghajari (NIOC), H. Noroozi (NIOC), M. Sedigh (NIOC) & J. Bagheri (NIOC)
Abstract The North Anatolian Fault (NAF) extends for over 1,000 km across Türkiye and poses significant seismic hazard in the region. The Main Marmara Fault (MMF) segment of the NAF in the Sea of Marmara (NW Türkiye), exhibits along‐strike segmentation in its interseismic strain accumulation. Constraining the lithospheric configuration below the MMF is critical to understand its segmentation and assessing seismic hazard in the area. We present a new 3D lithospheric‐scale density of the Sea of Marmara, that combines gravity modeling and seismic tomography analysis. Using forward and inverse gravity modeling with free‐air gravity data and available constraints of geological units we derived the intra‐crustal density structure. Shear‐wave velocity tomography models provided insights into the temperature and density configuration of the uppermost mantle, and the geometry of the 1330°C isotherm. Our results highlight significant crustal density variations: lower‐density crust in the Sakarya Zone and Strandja Massif, and denser crust below the Istanbul Zone, which overlies a relatively hotter lithospheric mantle. This lithospheric configuration reflects both ongoing tectonic processes and inheritance from past geological events, including the drifting of the Istanbul Zone crustal block and the signature of past subduction events. The extent of the Istanbul Zone denser crust spatially correlates with the locked segment of the MMF. The bimaterial nature of the fault segment likely influences its interseismic and coseismic behavior. The denser, stiffer Istanbul Zone crust would promote interseismically locked conditions in contrast to the adjacent, more compliant crustal block and could result in asymmetric rupture with a preferred directivity.