The Imager for Mars Pathfinder (IMP) acquired four spectra of parts of the sub‐Mars hemispheres of Phobos and Deimos. The measured region of Phobos is expected to be a mixture of the two spectral units identified on that satellite from Phobos 2 data, and the IMP spectra of Phobos are intermediate to the two units as expected. The derived geometric albedo is consistent with the value for that part of Phobos determined from Viking imagery. The IMP spectrum of Deimos is generally consistent with previous measurements acquired from the ground and from the Hubble Space Telescope (HST), but the signal‐to‐noise ratio is lower than that of the Phobos data. The spectral contrast between the two moons is similar to that seen in HST and Phobos 2 data. Mars Pathfinder measurements therefore substantiate recent results which indicate that Phobos and Deimos are not, as previously believed, analogous to C‐type asteroids. They also provide some indications for an absorption near 700 nm, perhaps like that seen in other low‐albedo asteroids. Both Martian moons are redder than most asteroids, and most closely resemble two analog materials believed to have undergone very dissimilar histories: primitive D‐like asteroids, and highly space‐weathered, mafic‐rich assemblages, such as are present in lunar mare soils.
The Kuiper Belt is a distant region of the Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a Cold Classical Kuiper Belt Object, a class of objects that have never been heated by the Sun and are therefore well preserved since their formation. Here we describe initial results from these encounter observations. MU69 is a bi-lobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color and compositional heterogeneity. No evidence for satellites, ring or dust structures, gas coma, or solar wind interactions was detected. By origin MU69 appears consistent with pebble cloud collapse followed by a low velocity merger of its two lobes.
Abstract The Jupiter Trojans, being trapped around the stable L4 and L5 Jupiter Lagrangian points, are thought to be more primitive than the Main Belt asteroids. They are believed to have originated from a range of heliocentric distances in the trans-Neptunian region, to have subsequently been scattered inwards, and finally captured in their current location during the phase of Giant Planet migration. As a consequence, their bulk composition is expected to reflect that of the protoplanetary disk at the time and location of their formation. The photometric properties of Trojans appear to have a bi-modal distribution. A few Trojans have been discovered to be binary systems, suspected contact binaries, or to possess moonlets, which has revealed consistently low bulk densities (around $1\times 10^{3}$ 1×103 kg $\mathrm {m}^{-3}$ m−3 ) for those systems. Those estimates, together with the presence of a spin barrier between 4 and 4.8 h rotation period, suggest that low densities are a general property of the population, similar to that of cometary nuclei. Current Trojan physical properties provide clues that relate to their formation that can, in turn, be traced back to the origin of the solar system. We review here our current knowledge on the physical properties of Trojans and the methods used for their determinations. Most of these methods are based on Earth-bound observations, and are limited by the large distance to these objects. The next breakthrough will be made possible by the Lucy mission, which, by visiting several Trojans during a tour through both clouds, will address many open questions and probably raise new ones. The combination of the ground truth for select objects provided by Lucy with the context view given by the Earth-bound observations will result in powerful synergy.
Abstract We have measured the thermal conductivity and specific heat capacity of subsamples from four iron meteorites with nickel concentrations between 5% and 8% (Agoudal, Canyon Diablo, Muonionalusta, and Sikhote‐Alin ) at temperatures between 5 and 300 K. From these, we have calculated their thermal diffusivity and thermal inertia values across this temperature range. For comparison, we also measured subsamples from two L chondrites ( NWA 11038 and NWA 11344) at the same time, using the same methods. The thermal diffusivity results of the irons show a relatively constant value for T > 100 K with a characteristic low‐temperature maxima at ∼5 K for the iron meteorites; by contrast, the diffusivities of the L chondrites fell by a factor of two over this range and reached low‐temperature maxima at ∼20 K. Thermal inertia values show a crossover behavior, with a strong increase in thermal inertia as temperatures drop below 55 K and a less dramatic change at higher temperatures. Our new diffusivity and inertia values cover a wider range of temperatures than previous literature data for iron meteorites. They also provide a useful ground truth in understanding remotely sensed thermal inertias of potentially metal‐rich asteroids, including 16 Psyche, target of the NASA Psyche mission.
Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small “photometric spot” subframed scenes, covering phase angles from 20° to 150°; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ∼0° to 155°; and (3) full‐image scenes of the rock “Yogi,” covering phase angles from 48° to 100°. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140°, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass‐like or varnished surface.
The first NASA scout mission to Mars, Phoenix, launched 4 August will land in the northern part of Mars in the locality of 68°N and 233°E on 25 May 2008. Part of the science payload is the Magnetic Properties Experiments (MPE) that consists of two main experiments: the Improved Sweep Magnet Experiment (ISWEEP) and 10 sets of two Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) magnet substrates with embedded permanent magnets of different strength. The ISWEEP experiment is, as the name indicates, an improved version of the Sweep Magnet Experiments flown onboard the two Mars Exploration Rovers (MERs) Spirit and Opportunity. The sweep magnet is ring shaped and is designed to allow only nonmagnetic particles to enter a small circular area at the center of the surface of this structure. Results from this experiment have shown that on the MERs hardly any particles can be detected in the central area of this ring‐shaped magnet. From this we have concluded that essentially all particles in the Martian atmosphere are magnetic in the sense that they are attracted to permanent magnets. In order to improve the sensitivity of the Sweep Magnet Experiment for detection of nonmagnetic or very weakly magnetic particles, the ISWEEP holds six ring‐shaped magnets, somewhat larger than the sweep magnet of the MERs, and with six different background colors in the central area. The six different colors provide new possibilities for improved contrast between these background colors, i.e., any putative nonmagnetic particles should render these more easily detectable. The Surface Stereo Imager will also take advantage of the small clean areas in the ISWEEPs and use the presumably constant colors for radiometric calibration of images. The MECA magnets work as substrates in the MECA microscopy experiments; they are built to attract and hold magnetic particles from dust samples. The collected dust will then be examined by the optical microscope and the atomic force microscope in the MECA package.