Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/Satelite de Aplicaciones Cientiflcas-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (Comision Nacional de Actividades Espaciales). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.
The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea-surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1/f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT <;0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration (CSC) data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.
Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km altitude in a sun-synchronous orbit and 300 km swath can provide the desired 100 km resolution global coverage every week. Within this decade, it may be possible to combine satellite sea surface salinity measurements with ongoing satellite observations of temperature, surface height, air-sea fluxes; vertical profiles of temperature and salinity from the Argo program; and modern ocean/atmosphere modeling and data assimilation tools, in order to finally address the complex influence of buoyancy on the ocean circulation and climate.
The Thermal Infrared Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper describes the design of the TIRS instrument, the results of pre-launch calibration measurements and shows an example of initial on-orbit science performance compared to Landsat 7.
Aquarius is a NASA/Earth System Science Pathfinder (ESSP) mission that proposes to make the first‐ever global measurements of sea surface salinity. These measurements will enable improved understanding of oceanic thermohaline circulation and of the changes in oceanic circulation that are related to seasonal to interannual climate variability. Aquarius science goals also address tropical ocean‐climate feedbacks and freshwater budget components of the coupled ocean‐atmosphere system. These oceanographic science requirements for Aquarius dictate measurements of global sea surface salinity that are accurate to 0.2–0.3 psu, as averaged monthly and over 100–200 km areas. Key aspects of the Aquarius salinity mission design include the instrument with its high‐stability L‐band radiometers, the precise calibration of the measurements, and the salinity retrieval algorithm. The Aquarius mission will meet the science needs by providing complete global coverage of ocean surface salinity, with an 8 day cycle of observations using a three beam, L‐band radiometer/scatterometer flying in a 6 am/6 pm polar orbit. This conceptual design has been verified using observations from aircraft flight instruments. The radiometer design for the instrument and the needed precise calibration is based on proven, temperature‐stabilized radiometer designs with internal references, plus vicarious calibration approaches developed in the course of previous space missions.
Abstract The salinity of the open ocean is important for understanding ocean dynamics and for modelling energy exchange with the atmosphere. But existing data are sparse and much of the ocean is unsampled. Sea surface salinity can be measured remotely with passive microwave sensors operating near 1.4 GHz (L-band). Salinity differences have been observed from space and aircraft instruments have demonstrated that salinity can be measured with an accuracy of better than 1 psu. Sensor technology has improved sufficiently to seriously propose a satellite system to map salinity over the open oceans. Notes An updated version of a paper originally presented at Oceans from Space ‘Venice 2000’ Symposium, Venice, Italy, 9–13 October 2000.