Schwertmannite is a metastable mineral playing a crucial role in the immobilization of metal(oid)s in acid mine drainage (AMD) systems. High temperatures associated with wildfires could lead to a sudden schwertmannite transformation, changing the mobility of metal(oid)s. The objective of the present study was to examine the thermal transformation from schwertmannite to hematite, and the subsequent effect on the chromium partitioning. The immobilization of arsenate after thermal transformation and its implications on chromium mobility was also evaluated. Natural schwertmannite, with increasing contents of chromium, was thermally treated between 200 to 800 °C. Transformation products were characterized by solid-phase techniques and selective chemical extractions. Results indicated a transformation to hematite at temperatures above 400 °C. The presence of chromium barely affected the temperature at which the transformation occurred, although partitioning of chromium in the mineral changed with temperature. As the temperature increased from 25 °C to 400 °C, chromium was less mobile and less outcompeted by arsenic adsorption, suggesting a larger contribution of inner-sphere complexes with increasing temperature. At temperatures above 600 °C, non-mobile forms strongly associated with neo-formed hematite were found. Finally, neo-formation of hematite led to a decrease in arsenic adsorption, implying a potentially enhanced arsenic mobility in AMD systems upon wildfires.
This study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent. Iron-sand was effective only for adsorbing As, but Cr, Cu, and Zn were poorly adsorbed. Only iron-peat showed the simultaneous removal of all tested metal (loid)s. Metal (loid) leaching from the spent sorbent at reducing conditions as means to assess the behaviour of the spent sorbent if landfilled was also evaluated. For this purpose, a standardised batch leaching test and leaching experiment at reducing conditions were conducted using the spent sorbent. It was found that oxidising conditions, which prevailed during the standardised batch leaching test, could have led to an underestimation of redox-sensitive As leaching. Substantially higher amounts of As were leached out from the spent sorbents at reducing atmosphere compared with oxidising one. Furthermore, reducing environment caused As(V) to be reduced into the more-toxic As (III).
Although landfilling is environmentally and economically unsustainable, it is the dominant soil remediation method in EU member states. This paper describes part of a study on mixed contaminants that investigated the stabilisation of arsenic (As) in contaminated soil in an outdoor box experiment with electrokinetic treatment (EK). The experiment was conducted in two 1 m
This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64–73% and 0.36–0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
Abstract Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method. The supply of iron (Fe) amendments in contaminated soil was done using corroding Fe electrodes as an Fe source and applying an alternating polarity electrical current. Soil with a large fraction of organic matter (25%) and containing 505 mg kg −1 As and 5160 mg kg −1 16-PAHs was placed in Plexiglas cells equipped with porewater samplers and an iron electrode pair connected to a power supply unit. The porewater and percolating solution were periodically sampled and analysed over an 8-week period. The modified electrochemical soil treatment led to a decrease in the total concentration of 16-PAHs in soil by 56–68%. The amount of poorly crystalline Fe oxides in the soil substantially increased, especially close to the electrodes, enabling 76–89% of As to be bound to this most reactive Fe fraction. Nevertheless, over 10% of soil As remained in the most soluble and available fraction (exchangeable), most likely due to the decline in soil redox potential over time. This study suggests that electrochemical oxidation of organic soil with mixed contaminants could be used for in situ soil remediation but needs further improvement to achieve more efficient As immobilisation.
Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be a promising technique for the treatment of water contaminated with per- and poly-fluoroalkyl substances (PFAS). Various studies have demonstrated that the extent of PFAS degradation is influenced by the composition of samples and electrochemical conditions. This study evaluated the significance of several factors, such as the current density, initial concentration of PFAS, concentration of electrolyte, treatment time, and their interactions on the degradation of PFAS. A 24 factorial design was applied to determine the effects of the investigated factors on the degradation of perfluorooctanoic acid (PFOA) and generation of fluoride in spiked water. The best-performing conditions were then applied to the degradation of PFAS in wastewater samples. The results revealed that current density and time were the most important factors for PFOA degradation. In contrast, a high initial concentration of electrolyte had no significant impact on the degradation of PFOA, whereas it decreased the generation of F−. The experimental design model indicated that the treatment of spiked water under a current density higher than 14 mA cm−2 for 3–4 h could degrade PFOA with an efficiency of up to 100% and generate an F− fraction of approximately 40–50%. The observed high PFOA degradation and a low concentration of PFAS degradation products indicated that the mineralization of PFOA was effective. Under the obtained best conditions, the degradation of PFOA in wastewater samples was 44–70%. The degradation efficiency for other PFAS in these samples was 65–80% for perfluorooctane sulfonic acid (PFOS) and 42–52% for 6–2 fluorotelomer sulfonate (6-2 FTSA). The presence of high total organic carbon (TOC) and chloride contents was found to be an important factor affecting the efficiency of PFAS electrochemical degradation in wastewater samples. The current study indicates that the tested method can effectively degrade PFAS in both water and wastewater and suggests that increasing the treatment time is needed to account for the presence of other oxidizable matrices.
The contamination of natural water and industrial wastewater with per- and polyfluoroalkyl substances (PFAS) occurs globally. Thus, proper technologies are required to reduce PFAS in the environment and mitigate the adverse effects of these pollutants on human health and the environment. This study used a 23 full factorial design to evaluate the importance of operating factors including the level of persulfate (PS), the initial concentration of PFAS, and the time to the photochemical degradation of PFAS via ultraviolet irradiation at 185/254 nm assisted with persulfate (PS/UV method) in spiked solution. The method was then applied to break down PFAS in industrial wastewater, landfill leachate and groundwater samples using the highest factor levels applied in the 23 full factorial design. The results showed that the three investigated factors played an important role in the degradation of PFAS. The highest PFAS degradation was 57 % perfluorobutanoic acid (PFBA), 80 % perfluorooctanoic acid (PFOA) and 60 % perfluorooctane sulfonate (PFOS) using 10 mg L−1 PFAS, 5 g L−1 PS for 4 h. The defluorination also increased in the presence of PS but decreased in the presence of potassium hydrogen phthalate, nitrates, and chlorides. The PS/UV method decreased the concentration of PFAS in wastewater samples by 20–25 % PFOS and 13–15 % perfluorohexane sulfonate (PFHxS). PFAS degradation in wastewater improved with increasing treatment time. Under the PS/UV treatment, the degradation of major PFAS in groundwater was 94 % 6–2 FTS, 75 % PFOA, 62 % PFOS and 61 % PFHxS. The removal of major compounds in landfill leachate reached up to 12 % PFHxA, 32 % PFPeA, 56 % PFOA and 43 % PFOS. Our study indicated matrix effects leading to decreased PFAS degradation in different contaminated waters. The level of PS should also be controlled to an optimal value because higher levels led to a decrease in treatment efficiency.