Abstract The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada involved extrusion of continental flood basalts (CFBs) at 130–120 Ma and 100‐95 Ma and emplacement of an extensive sill and dike network that intersected the Carboniferous to Paleogene Sverdrup Basin. In this paper, we present new 40 Ar/ 39 Ar ages, major and trace elements, and Sr‐Nd‐Pb isotope ratios for HALIP lava, dikes, and sills from Bukken Fiord, NW Axel Heiberg Island, Canadian Arctic Islands. Our best constrained 40 Ar/ 39 Ar ages yield a weighted average of 124.1 ± 1 (2 σ ) Ma, coincident with the first pulse of tholeiitic CFB magmatism in the Arctic‐wide HALIP as exemplified by Isachsen Formation flood basalts on Axel Heiberg Island. The Bukken Fiord samples are plagioclase and clinopyroxene‐phyric tholeiitic basalts, are relatively evolved (3.2–6.5 wt% MgO), and share similar major and trace element compositions to typical HALIP tholeiites. Initial 143 Nd/ 144 Nd ranges from 0.51260 to 0.51291 and initial 87 Sr/ 86 Sr ranges from 0.70362 to 0.70776, while measured 206 Pb/ 204 Pb, 207 Pb/ 204 Pb, and 208 Pb/ 204 Pb range from 18.614 to 19.199, 15.534 to 15.630, and 38.404 to 39.054, respectively. The most primitive sample in this study has Sr‐Nd‐Pb isotope signatures that suggest an enriched plume‐derived mantle source for HALIP tholeiites. Most samples, however, possess relatively radiogenic isotope signatures that can be explained by moderate degrees of assimilation of Sverdrup Basin sedimentary rocks. Magma‐crust interaction in the HALIP plumbing system was likely widespread and may have increased the environmental impact of the HALIP, particularly if crustal carbon was volatilized.