Abstract Mesosiderites are unique stony‐iron meteorites, composed of eucrite‐like silicates and Fe‐Ni metals. Their formation, including silicate‐metal mixing and metamorphisms, provides important insights into early planetary processes in the inner solar system. This report describes the first in situ U‐Pb and Hf‐W dating of zircon in a mesosiderite Asuka 882023. The U‐Pb (4502 ± 75 Ma) and Hf‐W (4532.8 + 5.7/−10.5 Ma) ages may represent timing of the zircon formation, which is considerably younger than crustal differentiation of the parent body. This evidence, combined with earlier studies of chronology, implies that mesosiderites were reheated at 4530–4520 Ma, clearly after the silicate‐metal mixing.
Shock metamorphism of minerals in meteorites provides insights into the ancient Solar System. Calcite is an abundant aqueous alteration mineral in carbonaceous chondrites. Return samples from the asteroids Ryugu and Bennu are expected to contain calcite-group minerals. Although shock metamorphism in silicates has been well studied, such data for aqueous alteration minerals are limited. Here, we investigated the shock effects in calcite with marble using impact experiments at the Planetary Exploration Research Center of Chiba Institute of Technology. We produced decaying compressive pulses with a smaller projectile than the target. A metal container facilitates recovery of a sample that retains its pre-impact stratigraphy. We estimated the peak pressure distributions in the samples with the iSALE shock physics code. The capability of this method to produce shocked grains that have experienced different degrees of metamorphism from a single experiment is an advantage over conventional uniaxial shock recovery experiments. The shocked samples were investigated by polarizing microscopy and X-ray diffraction analysis. We found that more than half of calcite grains exhibit undulatory extinction when peak pressure exceeds 3 GPa. This shock pressure is one order of magnitude higher than the Hugoniot elastic limit (HEL) of marble, but it is close to the HEL of a calcite crystal, suggesting that the undulatory extinction records dislocation-induced plastic deformation in the crystal. Finally, we propose a strategy to re-construct the maximum depth of calcite grains in a meteorite parent body, if shocked calcite grains are identified in chondrites and/or return samples from Ryugu and Bennu.
Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation. Here we report that 4-billion-year-old (Ga) carbonates in Martian meteorite, Allan Hills 84001, preserve indigenous nitrogen(N)-bearing organics by developing a new technique for high-spatial resolution in situ N-chemical speciation. The organic materials were synthesized locally and/or delivered meteoritically on Mars during Noachian age. The carbonates, alteration minerals from the Martian near-surface aqueous fluid, trapped and kept the organic materials intact over long geological times. This presence of N-bearing compounds requires abiotic or possibly biotic N-fixation and ammonia storage, suggesting that early Mars had a less oxidizing environment than today.
We have developed a method to analyze all rare earth elements in silicate glasses and zircon minerals using a high lateral resolution secondary ion mass spectrometer (NanoSIMS). A 2nA O- primary beam was used to sputter a 7-8-μm diameter crater on the sample surface, and secondary positive ions were extracted for mass analysis using an accelerating voltage of 8 kV. A high mass resolving power of 9,400 at 10% peak height was attained to separate heavy REE from oxide of light REE. A multi-collector system combined with peak-jumping by magnetic field was adjusted to detect REEs and silicon-30 for calibration. Based on results of NIST SRM610 glass, sensitivities of REEs vary from 3 cps/ppm/nA of Lu to 13 cps/ppm/nA of Eu. Reproducibility of REE/Si ratios is better than 18% at 2σ. Secondary ion yields of REEs show positive relationships with their ionization potential of second valence. REEs of AS3, QGNG, and Torihama zircons were measured and calibrated against those of 91500 standard zircon. SIYs of REEs of zircon are identical to those of the glass standard. AS3 and QGNG data are generally consistent with those of previous work. Torihama REE data combined with the whole rock data provide partition coefficients of REEs between silicate melt and zircon. The relationship between these coefficients and ionic radius is explained by an elastic moduli model.
The late heavy bombardment (LHB) hypothesis, wherein the terrestrial planets are thought to have suffered intense collisions ca. 3.9 billion years ago, is under debate. Coupled with new dynamical calculations, re-examination of geochronological data seem to support an earlier solar system instability and a smooth monotonic decline in impacts, as opposed to a "cataclysm." To better understand this collisional history, records from the asteroidal meteorites are required. Here, we report a uranium–lead (U–Pb) chronological dataset for eucrite meteorites thought to originate from the asteroid 4 Vesta; this dataset indicates to a continuous history of collisions prior to 4.15 Ga. Our 207Pb⁎/206Pb⁎ model ages of apatite [Ca5(PO4)3(F,Cl,OH)] and merrillite [Ca9NaMg(PO4)7] from three brecciated basaltic eucrites—Juvinas (4150.3 ± 11.6 million years ago (Ma); merrillite only), Camel Donga (disturbed around 4570–4370 Ma), and Stannern (4143.0 ± 12.5 Ma)—record multiple thermal metamorphic events during the period of ∼4.4–4.15 Ga. We interpret this to mean that Vesta or the vestoid cluster underwent multiple impacts and moderate high-temperature reheating during this time. The ages of ∼4.4–4.15 Ga are distinctly younger than the initial magmatic process on Vesta (>4.5 Ga) but are significantly older than a later "impact peak" based on some interpretations of 40Ar–39Ar chronologies (∼3.9–3.5 Ga). The intense collisions prior to 4.15 Ga on Vesta are at odds with the conventional LHB hypothesis but not inconsistent with the much earlier bombardment and monotonic decline scenario. Different radiometric chronologies of the asteroid likely represent the different stages of a continual collisional process. Conversely, the model 207Pb⁎/206Pb⁎ ages of apatite in the unbrecciated basaltic eucrite, Agoult, returned an age of 4524.8 ± 9.6 Ma. This may represent slow cooling from an earlier global reheating of the crust on Vesta at 4.55 Ga, as documented by other radiometric chronologies. The apatite in Juvinas recorded a coincident timing of 4516.9 ± 10.4 Ma, which could be due to either slow crustal cooling or impact.
Abstract Japan Aerospace Exploration Agency's Martian Moons eXploration (MMX) mission will launch a spacecraft in 2024 to return samples from Phobos in 2029. Curatorial work for the returned Phobos samples is critical for the sample allocation without degrading the sample integrity and subsequent sample analysis that will provide new constraints on the origin of Phobos and the evolution of the circum‐Mars environment. The Sample Analysis Working Team of the MMX is designing the sample curation protocol. The curation protocol consists of three phases: (1) quick analysis (extraction and mass spectrometry for gases), (2) pre‐basic characterization (bulk‐scale observation), and (3) basic characterization (grain‐by‐grain observation and allocation of the sample aliquots). Nondestructive analyses within the clean chamber (e.g., visible and near‐infrared spectral imaging) and outside the chamber (e.g., gas mass spectrometry) are incorporated into the curation flow in coordination with the MMX mission instrument teams for ground‐truthing the remote‐sensing data sets. The MMX curation/sample analysis flow enables the seamless integration between the sample and remote‐sensing data sets to maximize the scientific value of the collected Phobos samples.