Recent Ar–Ar and U–Pb zircon geochronology from across the British and Irish Caledonides has revealed a prolonged period of arc-ophiolite formation ( c . 514–464 Ma) and accretion ( c . 490–470 Ma) to the Laurentian margin during the Grampian orogeny. The Slieve Gallion Inlier of Northern Ireland, an isolated occurrence of the Tyrone Volcanic Group, records the development of a peri-Laurentian island arc–backarc and its obduction to an outboard microcontinental block. Although a previous biostratigraphic age constraint provides a firm correlation of at least part of the volcanic succession to the Ca1 Stage of the Arenig ( c . 475–474 Ma), there is uncertainty on its exact statigraphic position in the Tyrone Volcanic Group. Earliest magmatism is characterized by light rare earth element (LREE) depleted island-arc tholeiite. Overlying deposits are dominated by large ion lithophile and LREE-enriched, hornblende-phyric and feldspathic calc-alkaline basaltic andesites and andesitic tuffs with strongly negative ϵNd t values. Previously published biostratigraphic age constraints, combined with recent U–Pb zircon geochronology and new petrochemical correlations, suggest that the Slieve Gallion Inlier is equivalent to the lower Tyrone Volcanic Group. Temporal and geochemical correlations between the Slieve Gallion Inlier and Charlestown Group of Ireland suggest that they may be part of the same arc system, which was accreted at a late stage ( c . 470 Ma) in the Grampian orogeny. A switch from tholeiitic volcanism to calc-alkaline dominated activity within the Lough Nafooey Group of western Ireland occurred prior to c . 490 Ma, some 15–20 Myr earlier than at Tyrone and Charlestown. Supplementary materials: Sampling and geochemical results (major elements, loss on ignition, trace elements, REE and Nd isotopes) are available at www.geolsoc.org.uk/SUP18640 .
An intrusion of trachy-andesite, representative of a newly discovered suite of high-K–Ba–Sr, calc-alkaline minor intrusions (termed herein the Sperrin Mountains suite), hosted within the Grampian terrane in the north of Ireland, has been dated by U–Pb zircon at 426.69 ± 0.85 Ma (mid-Silurian; Wenlock–Ludlow boundary). Geochemistry reveals a close association with the Fanad, Ardara and Thorr plutons of the Donegal Batholith and the Argyll and Northern Highlands Suite of Scotland. The deep-seated Omagh Lineament appears to have limited eastward propagation of the Sperrin Mountains suite from beneath the main centre of granitic magmatism in Donegal. A Hf depleted mantle model age (TDMHf) of c. 800 Ma for trachy-andesite zircons indicates partial melting from a source previously separated from the mantle. Whole-rock geochemistry of the suite is consistent with a model of partial melting, triggered by slab break-off, following thrusting of Ganderia–Avalonia under the Southern Uplands–Down–Longford accretionary prism (i.e. Laurentian margin). The new age constrains the timing of this event in the north of Ireland and is consistent with the petrogenesis of Late Caledonian high-K granites, appinites and minor intrusions across the Caledonides of northern Britain and Ireland.
Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.
Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.
Abstract Modern seafloor hydrothermal systems are unique environments in which many of the Earth's reservoirs, including the hydrosphere, biosphere, and geosphere, dynamically interact. Analysis of spatially constrained sulfur isotope compositions from fluids and hydrothermal precipitates within the discharge zone of a volcanogenic system can be used to trace the interactions between the various isotopically distinct sulfur reservoirs that result in the formation of hydrothermal massive sulfide deposits. Here we present in situ sulfur isotope results from laterally and vertically constrained euhedral hydrothermal pyrite from the Iheya North hydrothermal system in the Okinawa Trough, which was investigated during the Integrated Ocean Drilling Program Expedition 331. Hydrothermal pyrite at the North Big Chimney yields δ 34 S values of ~+11.9 ± 1.1‰ (1σ), which are near identical to the δ 34 S composition of the vent fluid. Outward, ~150 and ~450 m from North Big Chimney, hydrothermal pyrite within drill core yields δ 34 S equal to +10.9 ± 1.3‰ (1σ) and +7.0 ± 3.8‰ (1σ), respectively, showing a shift in isotopic composition away from the main vent site. This evolution to a lighter and more scattered isotopic signature of hydrothermal pyrite (which is easily identifiable from biogenic pyrite) is interpreted to indicate that the hydrothermal fluid leached sulfides (formed previously by biogenic processes) from the surrounding sedimentary strata. As the most significant metal enrichments (Fe, Zn, Cu, Bi, Tl, and Cd) are associated with samples that contain average hydrothermal pyrite δ 34 S values similar to δ 34 S of the vent fluid, we demonstrate that sulfur isotopes can vector toward metals in seafloor massive sulfide deposits.
The Tyrone Plutonic Group of Northern Ireland represents the upper portions of a tectonically dissected suprasubduction-zone ophiolite accreted to the composite Laurentian margin during the Middle Ordovician. Understanding its development and relationship to the Tyrone Central Inlier, an outboard fragment of relatively high-grade, peri-Laurentian continental crust, is essential for reconstructing the closure of the Iapetus Ocean. The Tyrone Plutonic Group is composed of tectonized layered, isotropic and pegmatitic gabbros, sheeted dolerite dykes and rare pillow lavas. New U–Pb zircon thermal ionization mass spectrometry geochronology has yielded an age of 483.68 ± 0.81 Ma from pegmatitic gabbro. Geochemical characteristics, Nd and Sr isotope systematics, and zircon inheritance indicate that the Tyrone Plutonic Group formed above a north-dipping subduction zone, by the propagation of a spreading centre into a microcontinental block. Synkinematic, calc-alkaline tonalitic to granitic material preserved in the contact zone between the Tyrone Plutonic Group and the Tyrone Central Inlier has produced pressure estimates of 2.3–4.0 ± 0.6 kbar and temperatures of 525–610 °C. Coeval arc–ophiolite accretion at c . 470 Ma may explain how sillimanite-grade metamorphic conditions were reached locally in the underlying Tyrone Central Inlier. Strong temporal, geochemical and lithological similarities exist to the Annieopsquotch Ophiolite Belt of Newfoundland. Supplementary materials: Petrographic photographs, whole-rock, isotopic and mineral geochemical data, and U–Th–Pb isotopic data are available at www.geolsoc.org.uk/SUP18646 .