Vicarious calibration is the determination of an on-orbit sensor’s radiometric response using measurements over test sites such as Railroad Valley (RRV), Nevada. It has the highest accuracy when a remote sensor’s view angle is aligned with that of the surface measurements, namely at a nadir view. For view angles greater than 10°, the dominant error is the uncertainty in the off-nadir correction factor. The factor is largest in the back-scatter principal plane and can reach 20%. The Orbiting-Carbon Observatory has access to a number of datasets to determine this deviation. These include measurements from field instruments such as the Portable Apparatus for Rapid Acquisition of Bidirectional Observation of the Land and Atmosphere (PARABOLA), as well as satellite measurements from Multi-angle Imaging SpectroRadiometer (MISR) and MODerate resolution Imaging Spectroradiometer (MODIS). The correction factor derived from PARABOLA is consistent in time and space to within 2% for view angles as large as 30°. Field spectrometer data show that the correction term is spectrally invariant. For this reason, a time-invariant model of RRV surface reflectance, along with empirically derived coefficients, is sufficient to use in the calibration of off-nadir sensors, provided there has been no recent rainfall. With this off-nadir correction, calibrations can be expected to have uncertainties within 5%.
We retrieved and examined the partial-column densities of carbon dioxide (CO2) in the lower (LT, typically 0–4 km) and upper (UT, typically 4–12 km) troposphere (XCO2LT and XCO2UT) collected over six global megacities: Beijing, New Delhi, New York City, Riyadh, Shanghai, and Tokyo. The radiance spectra were collected using the Thermal And Near-infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). Our retrieval method uniquely utilizes reflected sunlight with two orthogonal components of polarization and thermal emissions. We defined megacity concentration enhancement due to surface CO2 emissions as XCO2LT minus XCO2UT, allowing us to overcome some of the challenges in the enhancement analysis using existing column density data. We examined the relationship between the XCO2LT enhancements from the time series of intensive target observations over megacities and the inverse of simulated wind speed, which could be potentially used to estimate surface emissions. Next, we attempted to estimate the average emission intensity for each city from the linear regression slope. We also compared our obtained emission estimates with the Open-Data Inventory for Anthropogenic CO2 (ODIAC) inventory for evaluation. Our results demonstrate the potential utility of the new partial-column density retrievals for estimating megacity CO2 emissions. More frequent and comprehensive coverage characterizing the spatial distribution of emissions is necessary to reduce random error and bias associated with the obtained estimate.
Abstract. The Total Carbon Column Observing Network (TCCON) measures column-average mole fractions of several greenhouse gases (GHGs), beginning in 2004, from over 30 current or past measurement sites around the world using solar absorption spectroscopy in the near-infrared (near-IR) region. TCCON GHG data have been used extensively for multiple purposes, including in studies of the carbon cycle and anthropogenic emissions, as well as to validate and improve observations from space-based sensors. Here, we describe an update to the retrieval algorithm used to process the TCCON near-IR solar spectra and to generate the associated data products. This version, called GGG2020, was initially released in April 2022. It includes updates and improvements to all steps of the retrieval, including but not limited to the conversion of the original interferograms into spectra, the spectroscopic information used in the column retrieval, post hoc air mass dependence correction, and scaling to align with the calibration scales of in situ GHG measurements. All TCCON data are available through https://tccondata.org/ (last access: 22 April 2024) and are hosted on CaltechDATA (https://data.caltech.edu/, last access: 22 April 2024). Each TCCON site has a unique DOI for its data record. An archive of all the sites' data is also available with the DOI https://doi.org/10.14291/TCCON.GGG2020 (Total Carbon Column Observing Network (TCCON) Team, 2022). The hosted files are updated approximately monthly, and TCCON sites are required to deliver data to the archive no later than 1 year after acquisition. Full details of data locations are provided in the “Code and data availability” section.
Greenhouse gases Observing SATellite (GOSAT) is a Japanese mission to observe greenhouse gases, such as CO2 and CH4, from space. The GOSAT carries a Fourier transform spectrometer and a push broom imager. The development of GOSAT satellite and sensors has almost finished after the characterization of sensor performance in laboratory. In orbit, the observation data will be evaluated by onboard calibration data and implemented by ground processing system. Level 1 algorithm and processing system are developed by JAXA. The post-launch calibration items are planned and the methods are developed before launching. We show the Level 1 processing and in-orbit calibration of GOSAT sensors.
Abstract. We describe a method for removing systematic biases of column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) derived from short-wavelength infrared (SWIR) spectra of the Greenhouse gases Observing SATellite (GOSAT). We conduct correlation analyses between the GOSAT biases and simultaneously retrieved auxiliary parameters. We use these correlations to bias correct the GOSAT data, removing these spurious correlations. Data from the Total Carbon Column Observing Network (TCCON) were used as reference values for this regression analysis. To evaluate the effectiveness of this correction method, the uncorrected/corrected GOSAT data were compared to independent XCO2 and XCH4 data derived from aircraft measurements taken for the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the Japan Meteorological Agency (JMA), the HIAPER Pole-to-Pole observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. These comparisons demonstrate that the empirically derived bias correction improves the agreement between GOSAT XCO2/XCH4 and the aircraft data. Finally, we present spatial distributions and temporal variations of the derived GOSAT biases.
The Greenhouse gases Observing SATellite (GOSAT) launched in January 2009 has provided radiance spectra with a Fourier Transform Spectrometer for more than eight years. The Orbiting Carbon Observatory 2 (OCO-2) launched in July 2014, collects radiance spectra using an imaging grating spectrometer. Both sensors observe sunlight reflected from Earth’s surface and retrieve atmospheric carbon dioxide (CO2) concentrations, but use different spectrometer technologies, observing geometries, and ground track repeat cycles. To demonstrate the effectiveness of satellite remote sensing for CO2 monitoring, the GOSAT and OCO-2 teams have worked together pre- and post-launch to cross-calibrate the instruments and cross-validate their retrieval algorithms and products. In this work, we first compare observed radiance spectra within three narrow bands centered at 0.76, 1.60 and 2.06 µm, at temporally coincident and spatially collocated points from September 2014 to March 2017. We reconciled the differences in observation footprints size, viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF). We conclude that the spectral radiances measured by the two instruments agree within 5% for all bands. Second, we estimated mean bias and standard deviation of column-averaged CO2 dry air mole fraction (XCO2) retrieved from GOSAT and OCO-2 from September 2014 to May 2016. GOSAT retrievals used Build 7.3 (V7.3) of the Atmospheric CO2 Observations from Space (ACOS) algorithm while OCO-2 retrievals used Version 7 of the OCO-2 retrieval algorithm. The mean biases and standard deviations are −0.57 ± 3.33 ppm over land with high gain, −0.17 ± 1.48 ppm over ocean with high gain and −0.19 ± 2.79 ppm over land with medium gain. Finally, our study is complemented with an analysis of error sources: retrieved surface pressure (Psurf), aerosol optical depth (AOD), BRDF and surface albedo inhomogeneity. We found no change in XCO2 bias or standard deviation with time, demonstrating that both instruments are well calibrated.