Ground subsidence caused by permafrost thawing causes the formation of thermokarst ponds, where organic compounds from eroding permafrost accumulate. We photolyzed water samples from two such ponds in Northern Quebec and discovered the emission of volatile organic compounds (VOCs) using mass spectrometry. One pond near peat-covered permafrost mounds was organic-rich, while the other near sandy mounds was organic-poor. Compounds up to C10 were detected, comprising the atoms of O, N, and S. The main compounds were methanol, acetaldehyde, and acetone. Hourly VOC fluxes under actinic fluxes similar to local solar fluxes might reach up to 1.7 nmol C m-2 s-1. Unexpectedly, the fluxes of VOCs from the organic-poor pond were greater than those from the organic-rich pond. We suggest that different segregations of organics at the air/water interface may partly explain this observation. This study indicates that sunlit thermokarst ponds are a significant source of atmospheric VOCs, which may affect the environment and climate via ozone and aerosol formation. Further work is required for understanding the relationship between the pond's organic composition and VOC emission fluxes.
In subarctic regions, rising temperature and permafrost thaw lead to the formation of thermokarst ponds, where organics from eroding permafrost accumulate. Despite its environmental significance, limited knowledge exists regarding the photosensitivity of permafrost-derived carbon in these ponds. In this study, laboratory experiments were conducted to explore the photochemical transformations of organic matter in surface water samples from thermokarst ponds from different environments in northern Quebec, Canada. One pond near Kuujjuarapik is characterized by the presence of a collapsing palsa and is therefore organically rich, while the other pond near Umiujaq is adjacent to a collapsing lithalsa and thus contains fewer organic matters. Photobleaching occurred in the Umiujaq sample upon irradiation, whereas the Kuujjuarapik sample exhibited an increase in light absorbance at wavelength related to aromatic functionalities, indicating different photochemical aging processes. Ultrahigh-resolution mass spectrometry analysis reveals that the Kuujjuarapik sample preferentially photoproduced highly unsaturated CHO compounds with great aromaticity, while the irradiated Umiujaq sample produced a higher proportion of CHON aromatics with reduced nitrogen functionalities. Overall, this study illustrates that the photochemical reactivity of thermokarst pond water varies with the source of organic matter. The observed differences in reactivity contribute to an improved understanding of the photochemical emission of volatile organic compounds discovered earlier. Further insights into the photoinduced evolutions in thermokarst ponds may require the classification of permafrost-derived carbon therein.
Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM
Abstract. Iron-containing mineral aerosols play a key role in the oxidation of sulfur species in the atmosphere. Simulated cloud processing (CP) of typical mineral particles, such as illite (IMt-2), nontronite (NAu-2), smectite (SWy-2) and Arizona Test Dust (ATD) is shown here to modify sulfur dioxide (SO2) uptake onto mineral surfaces. Heterogeneous oxidation of SO2 on particle surfaces was firstly investigated using an in situ DRIFTS apparatus (diffuse reflectance infrared Fourier transform spectroscopy). Our results showed that the Brunauer–Emmett–Teller (BET) surface area normalized uptake coefficients (γBET) of SO2 on the IMt-2, NAu-2, SWy-2 and ATD samples after CP were 2.2, 4.1, 1.5 and 1.4 times higher than the corresponding ones before CP, respectively. The DRIFTS results suggested that CP increased the amounts of reactive sites (e.g., surface OH groups) on the particle surfaces and thus enhanced the uptake of SO2. Transmission electron microscopy (TEM) showed that the particles broke up into smaller pieces after CP, and thus produced more active sites. The “free-Fe” measurements confirmed that more reactive Fe species were present after CP, which could enhance the SO2 uptake more effectively. Mössbauer spectroscopy further revealed that the formed Fe phases were amorphous Fe(III) and nanosized ferrihydrite hybridized with Al ∕ Si, which were possibly transformed from the Fe in the aluminosilicate lattice. The modification of Fe speciation was driven by the pH-dependent fluctuation coupling with Fe dissolution–precipitation cycles repeatedly during the experiment. Considering both the enhanced SO2 uptake and subsequent promotion of iron dissolution along with more active Fe formation, which in turn led to more SO2 uptake, it was proposed that there may be a positive feedback between SO2 uptake and iron mobilized on particle surfaces during CP, thereby affecting climate and biogeochemical cycles. This self-amplifying mechanism generated on the particle surfaces may also serve as the basis of high sulfate loading in severe fog–haze events observed recently in China.