Abstract The Vettore–Bove normal fault system in central Italy ruptured during the 2016 M W 6.5 Norcia earthquake causing extensive surface faulting. At the Pian Grande di Castelluccio hanging wall basin, along the southern section of the fault ruptured during the M W 6.5 mainshock, we performed a high‐resolution seismic reflection/refraction experiment aimed at (a) imaging the shallow pattern of the fault system, and (b) reconstructing the architecture of the continental infill. We collected three profiles for a total length of ∼8 km. We used a reflection processing flow and non‐linear refraction tomography to obtain migrated stack sections and P‐wave velocity images resolved down to the depth of the pre‐Quaternary substratum. The main profile in the northern part of the basin crosses the westernmost splays of the ruptured fault zone striking N150°–170°. Seismic imaging unravels a ∼1 km‐wide fault zone comprising three W‐throwing splays and subsidiary faults, which affect the continental infill and produce a minimum aggregate Quaternary throw of ∼400 ± 100 m. Recent deformation is localized in this part of the surveyed fault section, attesting active displacement accumulation of the Vettore–Bove fault system. The other profiles in the central‐southern part of the basin show additional faults, likely striking N20°–40° and which concurred to generate a ∼500 m‐deep depocenter. These faults were mostly active during an early extensional phase; however, one of them likely displaces shallow layers with a throw close to the resolution limit of seismic data (<10 m), suggesting activity in the Late Pleistocene.
<p>The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event.<br>The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey.<br>We mapped unambiguous evidence of surface faulting at several sites between &#381;upi&#263; to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at<br>local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Kri&#382;, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault.<br>Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata</p>
Data contained in “20-Kyr-Long Record Of Surface Faulting Along The Source Of The 30 October 2016 Earthquake (Central Apennines, Italy), From Integrated Paleoseismic Datasets” submitted to Journal of Geophysical Research – Solid Earth by Cinti F.R.*, De Martini P.M.*, Pantosti D.*, Baize S.°, Smedile A.*, Villani F.*, Civico R.*, Pucci S.*, Lombardi A.M.*, Sapia V.*, Pizzimenti L.*, Caciagli M.*, Brunori C.A.* * Istituto Nazionale di Geofisica e Vulcanologia, Italy ° Institut de Radioprotection et de Sûreté Nucléaire, France
Abstract We conducted paleoseismic studies along the Montereale fault system (MFS; central Italy). The MFS shows geomorphological evidence of Late Quaternary activity and falls within the highest seismic hazard zone of central Apennines, between the epicentral areas of two recent earthquake sequences: 2009 L'Aquila and 2016–2017 central Italy. We excavated two trenches along the San Giovanni fault splay of the system, one intercepting the N140° striking bedrock main fault plane and the other cutting two subparallel fault scarps on the colluvial/alluvial deposits on the fault hanging wall. Excavations revealed repeated fault reactivation with surface faulting in prehistorical and historical times. We recognized and dated seven events in the last 26 kyr. The most recent ground‐rupturing event (evb1) possibly occurred 650–1,820 AD, consistent with one of the three main shocks that struck the area in 1,703 AD. A previous event (evb2) occurred between 5,330 bc and 730 bc , while older events occurred at 6,590–5,440 bc (evb3), 9,770–6,630 bc (evb4), and 16,860–13,480 bc (evb5). We documented two older displacement events (evb7 and evb6) between 23,780 bc and 16,850 bc . The minimum vertical slip rate at the trench site in the last 28–24 kyr is 0.3–0.4 mm/year. The inferred average recurrence interval for surface‐faulting events along the MFS is no longer than ~4 kyr. Based on the surface fault length ranging between 12 and 20 km, earthquakes with ≥ M 6.0 are possible for the MFS. The MFS is an independent earthquake source, and its paleoseismic data are fully comparable with those known for faults in central Apennines.
Abstract We forecast time‐independent and time‐dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault segmentation model. We also augment time‐dependent Brownian passage time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate M w > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher‐magnitude ruptures over some segments of the northern branch of the North Anatolian Fault Zone beneath the Marmara Sea. A total of 10 different M w = 7.0 to M w = 8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30 year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT + ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30 year probability, with a Poisson value of 29% and a time‐dependent interaction probability of 48%. We find an aggregated 30 year Poisson probability of M > 7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a twofold probability gain (ratio time dependent to time independent) on the southern strands of the North Anatolian Fault Zone.
Long-term fault escarpments are built by the accumulation of individual earthquakes producing incremental surface displacements on the fault releasing crustal tectonic loading. Cumulative escarpment studies have revealed a spatial slip variability along active faults as well as a temporal variability with the alternation of phases of intense seismic activity over a short period of time followed by long periods of quiescence. Understanding this spatial and temporal slip variability on individual faults and over a complex fault system provide a better knowledge of co-seismic rupture extents, essential for estimating past earthquakes magnitude and for seismic hazard assessment.Up to now, most studies have focused on a timeframe over few seismic cycles, making it difficult to apprehend the rupture barriers persistence and cumulative slip distribution.  Here, we aim at quantifying the slip variability over several timescales ranging from a few months to a few million years on the same fault.Our study focusses on the ~50 km-long Liri fault, SW of the Fucino basin. The fault is located at the contact between Cretaceous limestone and patches of Quaternary deposits locally convering Mio-Pliocene flysch sediments. Detailed mapping of the fault trace on high-resolution Digital Elevation Model (DEM) from UAV-acquired images, Pleiades images and Lidar together with field observations revealed changes in the morphological expression of the fault north and south of an important wind gap located at Capistrello. To the north, the faut trace is ~16 km-long located on the eastern side of ~2km-wide limestone ridge, reaching ~1300m asl elevation. Two bends in the fault trace, made of ~5km long segments, can be observed with the fault strike varying between N115° and N140°. In this northern section, the fault scarp appears subtle and we did not observe Quaternary deposits on the hanging wall. In the 30 km-long section, south of Capistrello, the cumulative scarp composed of numerous splays is evidenced by a sharp trace, offsetting several morphological surfaces and associated Quaternary sediment packages. Three major bends are observed in this section of the fault, separating 10 to 30 km-long segments striking between N110° and N160°. An alluvial surface offset by ~14 m of cumulative displacement was dated at ~35kyr using 36Cl cosmogenic exposure dating suggesting a minimum slip rate of 0.4 mm/yr.  Other morphological markers that have accumulated displacement between ~10 and 70 m-high have also been sampled for 36Cl cosmogenic exposure dating. Moreover, we excavated two small trenches at the base of the fault scarp within the Quaternary deposits affected by the fault revealing 3 rupture-surfacing earthquakes over the last 2500 yr, the last one occurring after 1226 CE. We will present those results and will discuss how the displacement varies along the fault both in time and space.