The East Mediterranean Radiocarbon (inter-)Comparison Project (EMRCP) has measured the 14 C ages of a number of sets of tree rings from the Gordion Area dendrochronology from central Anatolia at the Heidelberg Radiocarbon Laboratory. In several cases, multiple measurements were made over a period from the 1980s to 2009. This paper presents the final data set from this work (128 high-precision measurements), and considers (i) the relationship of these data against the standard Northern Hemisphere 14 C calibration data set (IntCal09), and (ii) the optimum calendar dating of this floating tree-ring record on the basis of the final set of high-precision 14 C data. It finds good agreement between the Anatolian data and IntCal09 in some important intervals (e.g. ∼1729 to 1350 cal BC) and observes one period (9th–8th centuries BC) where there appears to be some indication of a regional/growing season signal, and another period (later 14th–13th centuries BC) where IntCal09 may not best reflect the real 14 C record. The scale of the typical growing-season-related regional 14 C offset (ΔR) between the Aegean/Anatolian region and IntCal09 is also assessed (for the mid-2nd millennium BC and mid-2nd millennium AD), and found to be usually minor (at times where there are no major additional forcing factors and/or issues with the IntCal09 data set): of the order of 2–4 ± 2–4 yr.
This update on radiocarbon calibration results from the 19th International Radiocarbon Conference at Oxford in April 2006, and is essential reading for all archaeologists. The way radiocarbon dates and absolute dates relate to each other differs in three periods: back to 12400 cal BP, radiocarbon dates can be calibrated with tree rings, and the calibration curve in this form should soon extend back to 18000 cal BP. Between 12400 and 26000 cal BP, the calibration curves are based on marine records, and thus are only a best estimate of atmospheric concentrations. Beyond 26000 cal BP, dates have to be based on comparison (rather than calibration) with a variety of records. Radical variations are thus possible in this period, a highly significant caveat for the dating of middle and lower Paleolithic art, artefacts and animal and human remains.
Abstract Determining calendar ages for radiocarbon dates, or ordered sequences of radiocarbon dates, that intersect with a plateau on the radiocarbon calibration curve can be problematic since, without additional prior constraints, the calendar age ranges determined will tend to spread across the plateau, yielding wide and less than useful calendar age probability densities and age ranges. Where possible, modeling analysis should seek to identify informative priors that act to restrict the otherwise poorly controlled spread of probability across plateaus. Such additional information may be available, among other sources, from the stratigraphy, the context, or the samples themselves. The recent dating of ordered sequences of radiocarbon dates on sections of branches of the same olive ( Olea europaea ) shrub from Therasia (southern Aegean) associated with the Minoan eruption of the Thera (Santorini) volcano (Pearson et al. 2023), which intersect with the plateau in the radiocarbon calibration curve ca. 1620–1540 BC, offers an example of the problem. A re-analysis adding some plausible informative priors offers a substantially better defined likely dating range and different conclusions. Instead of finding an inconclusive probability range “encompassing the late 17th and entire 16th century BC” followed by arguments for “indications of increased probabilities for a mid-16th century BC date for the eruption,” a re-analysis incorporating appropriate informative priors identifies the likely date range as falling between the late 17th to early 16th centuries BC.
The Kyrenia Ship, found off the north coast of Cyprus, is a key vessel in the history of scientific underwater excavations and in the history of Greek shipbuilding. The first volume of the site’s final publication appeared in 2023 and provides detailed archaeological information tightly constraining the dating of the ship. A very specific date range is proposed: ca. 294–290 BCE, but is based on a less than certain reading of one coin recovered from the ship. While there is clear benefit to finding high-precision dates for the Kyrenia Ship and its rich assemblage using independent scientific dating (combined with Bayesian chronological modeling), efforts to do so proved more challenging and complex than initially anticipated. Strikingly, extensive radiocarbon dating on both wooden materials from the ship and on short-lived contents from the final use of the ship fail to offer dates using the IntCal20 calibration curve—the current Northern Hemisphere radiocarbon calibration curve at the time of writing—that correspond with the archaeological constraints. The issue rests with a segment of IntCal20 ca. 350–250 BCE reliant on legacy pre-AMS radiocarbon data. We therefore measured new known-age tree-ring samples 350–250 BCE, and, integrating another series of new known-age tree-ring data, we obtained a redefined and more accurate calibration record for the period 433–250 BCE. These new data permit a satisfactory dating solution for the ship and may even indicate a date that is a (very) few years more recent than current estimations. These new data in addition confirm and only very slightly modify the dating recently published for the Mazotos ship, another Greek merchant ship from the southern coast of Cyprus. Our work further investigated whether ship wood samples impregnated with a common preservative, polyethylene glycol (PEG), can be cleaned successfully, including a known-age test.
Magnetic survey methods have recently shown tremendous potential for the detection of archaeological hearths in Eastern Beringia, ranging from intermittent open-air camp fires to larger heat intensive activity areas. Here we present an overview of the method along with eight supporting case studies from seven U.S. National Park Service units in the U.S. state of Alaska, covering diverse geographic settings and time-periods. Together, these case studies demonstrate the capabilities of magnetic detection instruments in various modes of operation for finding datable archaeological deposits that span the breadth of known human occupation of this region. The examples range from the simplest use of the magnetometer as a single sensor reconnaissance instrument in a "search mode", to use as a gradiometer in conjunction with other geophysical methods such as ground-penetrating radar, to record precise measurements and inform nuanced interpretations. Examples presented here range from the terminal Pleistocene to historic periods, spanning 12,000 years of human activity in Eastern Beringia, and encompassing the arrival, emergence, and expansion of multiple human groups or cultural traditions in the New World.
Given the non-monotonic form of the radiocarbon calibration curve, the precision of single 14 C dates on the calendar timescale will always be limited. One way around this limitation is through comparison of time-series, which should exhibit the same irregular patterning as the calibration curve. This approach can be employed most directly in the case of wood samples with many years growth present (but not able to be dated by dendrochronology), where the tree-ring series of unknown date can be compared against the similarly constructed 14 C calibration curve built from known-age wood. This process of curve-fitting has come to be called “wiggle-matching.” In this paper, we look at the requirements for getting good precision by this method: sequence length, sampling frequency, and measurement precision. We also look at 3 case studies: one a piece of wood which has been independently dendrochronologically dated, and two others of unknown age relating to archaeological activity at Silchester, UK (Roman) and Miletos, Anatolia (relating to the volcanic eruption at Thera).
Single-year spikes in radiocarbon production are caused by intense bursts of radiation from space. Supernovae emit both high-energy particle and electromagnetic radiation, but it is the latter that is most likely to strike the atmosphere all at once and cause a surge in 14C production. In the 1990s, it was claimed that the supernova in 1006 CE produced exactly this effect. With the 14C spikes in the years 775 and 994 CE now attributed to extreme solar events, attention has returned to the question of whether historical supernovae are indeed detectable using annual 14C measurements. Here, we combine new and existing measurements over six documented and putative supernovae, and conclude that no such astrophysical event has yet left a distinct imprint on the past atmospheric 14C record.