Abstract. We present a novel method for regional climate classification that is based on coarse-grained categorical representations of multivariate climate anomalies and a subsequent Markov chain analysis. From the estimated transition matrix several descriptors, such as persistence, recurrence time and entropy, are derived. These descriptors characterise dynamic properties of regional climate anomalies and are connected with fundamental concepts from nonlinear physics like residence times, relaxation process and predictability. Such characteristics are useful for a comparative analysis of different climate regions and, in the context of global climate change, for a regime shift analysis. We apply the method to the bivariate set of water vapour and temperature anomalies of two regional climates, the Iberian Peninsula and the islands of Hawaii in the central Pacific Ocean. Through the Markov chain analysis and via the derived descriptors we find significant differences between the two climate regions. Since anomalies are departures from seasonal and long term components, these differences relate to differences in the short term stability of both regional climates.
Abstract. Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively) from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2), the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984) solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7) in the visible spectral range (415-650 nm), but it is +2.1% larger in the (370-415 nm) wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm), when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b) and SORCE/SIM (Harder et al., 2000) solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen -) with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm), -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002) our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.
A new method for the retrieval of global atmospheric vertical column amounts of water vapor from measurements of the Global Ozone Monitoring Experiment (GOME) is presented. The method is based on a modified Differential Optical Absorption Spectroscopy (DOAS) approach, taking into account the effects arising from strong wavelength dependent absorptions. In this paper the feasibility of this approach is demonstrated and first estimates on the retrieval precision and the accuracy of the H 2 O data product are given by comparison with selected Special Sensor Microwave Imager (SSM/I) data.
Abstract. Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called onion peeling DOAS (ONPD), which combines an onion peeling approach with a weighting function DOAS (differential optical absorption spectroscopy) fit in the spectral region between 1559 and 1671 nm. By use of updated pointing information and optimisation of the data selection as well as of the retrieval approach, the altitude range for reasonable CH4 could be broadened from 20 to 40 km to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles (17–45 km) of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5–10 % for CH4 and 2–3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002–April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated. CH4 trends above about 20 km are not significantly different from zero and the trend at 17 km is about 3 ppbv year−1. The derived CO2 trends show a general decrease with altitude with values of about 1.9 ppmv year−1 at 21 km and about 1.3 ppmv year−1 at 39 km. These results are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.
The spectrometer SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) on-board ENVISAT is measuring solar irradiances and Earthshine radiances from the UV to the NIR spectral region in nadir, limb and lunar/solar occultation geometry. From these measurements the amount and distribution of various atmospheric constituents are derived (O3, BrO, OClO, SO2, H2CO, NO2, CO, CO2, CH4, H2O, clouds, and aerosols).
To assure the quality of these data products at any time during the whole mission a detailed knowledge of the instrument status and behaviour is mandatory. To achieve this a comprehensive monitoring concept has been developed and implemented, involving various dedicated calibration and monitoring measurements. In this presentation, selected results from the analysis of these monitoring data are shown. Special emphasis is placed on the performance monitoring for the various light paths.
The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on-board ENVISAT is successfully operating since its launch in 2002. By preparing ENVISAT’s mission extension until 2013 the originally specified in-orbit lifetime of SCIAMACHY will be more than doubled and will provide for a long continuous set of excellent measurement data. Two aspects impact SCIAMACHY’s in-orbit performance during the mission extension. In 2010 the ENVISAT orbit altitude will be reduced and fuel consuming inclination maintenance manoeuvres will be stopped. Because the line-of-sight during nadir, limb and solar and lunar measurements is orbit dependent, a careful analysis has to establish the necessary on-board changes. Additionally instrument degradation may require appropriate countermeasures. On system side this affects thermal subsystems and life limited items as well as the scanner mechanisms.
Abstract. Improved versions of CH4 and N2O profiles derived at the Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía (CSIC) from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have become available. For the MIPAS full resolution period (2002–2004) these are V5H_CH4_21 and V5H_N2O_21 and for the reduced resolution period (2005–2012) these are V5R_CH4_224, V5R_CH4_225, V5R_N2O_224 and V5R_N2O_225. Here, we compare CH4 profiles to those measured by the Fourier Transform Spectrometer on board of the Atmospheric Chemistry Experiment (ACE-FTS), the HALogen Occultation Experiment (HALOE) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) and to the Global Cooperative Air Sampling Network (GCASN) surface data. We find the MIPAS CH4 profiles below 25 km to be typically higher in the order of 0.1 ppmv for both measurement periods. N2O profiles are compared to those measured by ACE-FTS, the Microwave Limb Sounder on board of the Aura satellite (Aura-MLS) and the Sub-millimetre Radiometer on board of the Odin satellite (Odin-SMR) as well as to the Halocarbons and other Atmospheric Trace Species Group (HATS) surface data. The mixing ratios from the satellite instruments agree well for the full resolution period. For the reduced resolution period, MIPAS produces similar values as Odin-SMR, but higher values than ACE-FTS and HATS. Below 27 km, the MIPAS profiles show higher mixing ratios than Aura-MLS, and lower values between 27 and 41 km. Cross comparisons between the two MIPAS measurement periods show that they generally agree quite well, but, especially for CH4, the reduced resolution period seems to produce slightly higher mixing ratios than the full resolution data.
Since the foundation of the SCIAMACHY Quality Working Group (SQWG) in a joint ESA-DLR-NIVR inter-agency effort in late 2006, the ESA operational Level 2 processor was significantly improved w.r.t. data quality and product range. During the last two years the product list was substantially enhanced by new (total columns of SO2, BrO, OClO, H2O, CO, Limb BrO profiles, Limb cloud flags) and improved products (total columns of O3, NO2, Absorbing Aerosol Index, Limb O3 profiles, Limb NO2 profiles).
For example, important improvements were achieved in the O3 and NO2 profile calculation by implementing an upgraded retrieval scheme and using now Level 1b version 7.0 data with an improved pointing correction. Nadir products of total column O3 and Absorbing Aerosol Index were improved by applying a radiometric degradation correction (m-factors) in the Level 1 to 2 processing step.