The upper mantle is critical for our understanding of terrestrial magmatism, crust formation, and element cycling between Earth's solid interior, hydrosphere, atmosphere, and biosphere. Mantle composition and evolution have been primarily inferred by surface sampling and indirect methods. We recovered a long (1268-meter) section of serpentinized abyssal mantle peridotite interleaved with thin gabbroic intrusions. We find depleted compositions with notable variations in mantle mineralogy controlled by melt flow. Dunite zones have predominantly intermediate dips, in contrast to the originally steep mantle fabrics, indicative of oblique melt transport. Extensive hydrothermal fluid-rock interaction is recorded across the full depth of the core and is overprinted by oxidation in the upper 200 meters. Alteration patterns are consistent with vent fluid composition in the nearby Lost City hydrothermal field.
We will present whole rock and mineral chemistry insights into the systematics of light elements (B, Li) and their isotopes during the serpentinization processes at both divergent and convergent plate margins. For the divergent plate case we have selected Site 1309D and some from the recently drilled (IODP Expedition 399, Atlantis Massif, Mid-Atlantic Ridge 30N) Site 1601C as the deepest in situ gabbo-peridotite drill cores ever recovered from the ocean floor. The downcore variation in fluid mobile elements and the vast Sr and light element isotope fractionations highlight the important role of seawater infiltration and seawater-crust interactions taking place at depth. However, it appears that the role of seawater is gradually diminishing with depth, where rather unaltered lithologies may still be involved in active metamorphic (hydration) reactions. For the convergent plate margin serpentinization we have selected to present the fascinating case of the Mariana serpentinite mud “volcanism” in the W. Pacific. Several key cores were recovered during ODP Legs 125 and 195, as well as during the IODP Expedition 366. The rocks and fluids at these forearc sites also show very large downcore elemental and isotope fractionations. In contrast to the oceanic intraplate sites, these are associated with fluids produced by metamorphic dehydration reactions occurring at blueschist and amphibolite facies conditions as a consequence of subduction of old and cold Pacific slabs. We will attempt to contrast the different tectonic settings and speculate on the importance of variously hydrated ocean crust as a volumetrically important carrier of volatiles from the surface to the deep mantle and back. Serpentinites may be important to kick-start subduction initiation.
Abstract Chalcophile elements and lithium (Li) isotopes were measured on lavas from a 220‐km transect across the Kamchatka arc in order to investigate the fluid variations below arc volcanoes and to trace the geochemical behaviour of Li in convergent plate margins. From the Eastern Volcanic Front (EVF), through the Central Kamchatka Depression (CKD), into the Sredinny Range (SR) volcanic zones, chalcophile element ratios (e.g., As/Ce and Sb/Ce) show clear across‐arc variations, decreasing (e.g., As/Ce: 0.20 to 0.03 and Sb/Ce: 0.013 to 0.002) with increasing depth above the slab (110 to 400 km). This clearly indicates a gradually decreasing influx of slab‐derived fluids added to the mantle wedge as the slab subducts below Kamchatka. In addition, the anomalously high U/Th, La/Sm, and B/Nb ratios in the CKD lavas suggest lawsonite breakdown reaction dominates the fluid release in this area. However, Li/Y (0.07 to 1.78) and δ 7 Li (+1.8 to +5.4‰, with an exception of +8.6‰ in CKD) show limited variations and values similar to the MORB mantle. A dehydration model suggests that slab‐derived fluids, which are characterized by high Li concentration and high δ 7 Li, do not control the Li budget in Kamchatka arc lavas. Therefore, the isotopic heavy Li from slab‐derived fluids likely equilibrates in the sub‐arc mantle, which acts as a buffer for Li systematics. In addition, based on the Li isotopic signatures of Klyuchevskoy volcano, our study demonstrates insignificant Li isotopic fractionation during mantle melting and subsequent differentiation.