Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.
A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.
Historically, the lack of primary perme- ability in crystalline rocks of the Piedmont physio- graphic province of Georgia was believed to result in low ground-water yields. However, focused study of lithology, foliations, and fractures in crystalline rocks in the vicinity of the city of Conyers, Rockdale County, Georgia, shows that geologic controls can contribute to high well yields in these rocks. Although surface geologic mapping indicates that the Conyers area primarily is underlain by granite gneiss, borehole video images show that subsurface lithology is an interlayered granite gneiss and biotite gneiss. Preferential weathering of the biotite gneiss is a significant factor controlling well yield. Most of the yield in each of the two wells studied is from openings along lithologic contacts between the granite gneiss and biotite gneiss, or from openings along compositional layering within the biotite gneiss. The biotite gneiss is thin at land surface, but distinctive enough to be mapped. This geologic unit could be useful for identifying high-yielding areas within the granite gneiss.
Obtaining large quantities of ground water needed for municipal and industrial supply in the Piedmont and Blue Ridge physiographic provinces can be challenging because of the complex geology and the typically low primary permeability of igneous and metamorphic rocks. Areas of enhanced secondary permeability in the bedrock do occur, however, and 'high-yield' wells are not uncommon, particularly where careful site-selection techniques are used prior to test drilling. The U.S. Geological Survey - in cooperation with the City of Lawrenceville, Georgia - conducted this study from 2000 to 2002 to learn more about how different geologic settings influence the availability of ground water in igneous and metamorphic bedrock with the expectation that this knowledge could be used to help identify additional water resources in the area. In compositionally layered-rock settings, wells derive water almost exclusively from lithologically and structurally controlled water-bearing zones formed parallel to foliation and compositional layering. These high-permeability, water-bearing zones - termed foliation-parallel parting systems -combined with high-angle joint systems, are the primary control for the high-yield wells drilled in the Lawrenceville area; yields range from 100 to several hundred gallons per minute (gal/min). Near Lawrenceville, areas with high ground-water yield are present in sequences of amphibolite, biotite gneiss, and button schist where the structural attitude of the rocks is gently dipping, in areas characterized by abundant jointing, and in topographic settings with a continuous source of recharge along these structures. In massive-rock settings, wells derive water mostly from joint systems, although foliation-parallel parting systems also may be important. Wells deriving water primarily from steeply-dipping joint systems typically have low yields ranging from 1 to 5 gal/min. Joint systems in massive-rock settings can be identified and characterized by using many of the methods described in this report. Geologic mapping was the primary method used to determine the distribution, variability, and relative concentrations (intensity) of joint systems. In the subsurface, joints were characterized by taking orientation measurements in the open boreholes of wells using acoustic and/or optical televiewers. In this investigation, the only practical approach found for locating areas of high ground-water potential was first through detailed geologic mapping followed by test drilling, borehole geophysical logging, and aquifer testing. Geologic methods help characterize both large- and small-scale structures and other lithologic and stratigraphic features that influence development of increased secondary permeability in the bedrock. The rock types, discontinuities, depth of weathering, topographic position, and recharge potential - which were the principal factors assessed through detailed geologic mapping - must be evaluated carefully, in relation to one another, to assess the ground-water potential in a given area.