The post-Mesoproterozoic tectonometamorphic history of the Musgrave Province, central Australia, has previously been solely attributed to intracontinental compressional deformation during the 580–520 Ma Petermann Orogeny. However, our new structurally controlled multi-mineral geochronology results, from two north-trending transects, indicate protracted reactivation of the Australian continental interior over ca. 715 million years. The earliest events are identified in the hinterland of the orogen along the western transect. The first tectonothermal event, at ca. 715 Ma, is indicated by 40Ar/39Ar muscovite and U–Pb titanite ages. Another previously unrecognised tectonometamorphic event is dated at ca. 630 Ma by U–Pb analyses of metamorphic zircon rims. This event was followed by continuous cooling and exhumation of the hinterland and core of the orogen along numerous faults, including the Woodroffe Thrust, from ca. 625 Ma to 565 Ma as indicated by muscovite, biotite, and hornblende 40Ar/39Ar cooling ages. We therefore propose that the Petermann Orogeny commenced as early as ca. 630 Ma. Along the eastern transect, 40Ar/39Ar muscovite and zircon (U–Th)/He data indicate exhumation of the foreland fold and thrust system to shallow crustal levels between ca. 550 Ma and 520 Ma, while the core of the orogen was undergoing exhumation to mid-crustal levels and cooling below 600–660 °C. Subsequent cooling to 150–220 °C of the core of the orogen occurred between ca. 480 Ma and 400 Ma (zircon [U–Th]/He data) during reactivation of the Woodroffe Thrust, coincident with the 450–300 Ma Alice Springs Orogeny. Exhumation of the footwall of the Woodroffe Thrust to shallow depths occurred at ca. 200 Ma. More recent tectonic activity is also evident as on the 21 May, 2016 (Sydney date), a magnitude 6.1 earthquake occurred, and the resolved focal mechanism indicates that compressive stress and exhumation along the Woodroffe Thrust is continuing to the present day. Overall, these results demonstrate repeated amagmatic reactivation of the continental interior of Australia for ca. 715 million years, including at least 600 million years of reactivation along the Woodroffe Thrust alone. Estimated cooling rates agree with previously reported rates and suggest slow cooling of 0.9–7.0 °C/Ma in the core of the Petermann Orogen between ca. 570 Ma and 400 Ma. The long-lived, amagmatic, intracontinental reactivation of central Australia is a remarkable example of stress transmission, strain localization and cratonization-hindering processes that highlights the complexity of Continental Tectonics with regards to the rigid-plate paradigm of Plate Tectonics.
Abstract Preservation of partially completed metamorphic reactions in the form of partial pseudomorphs is very important as it provides direct insight onto the reaction mechanism and the phases involved in the reaction. The staurolite and andalusite grade rocks in western Maine, USA, contain cordierite porphyroblasts partly pseudomorphed by coarse‐grained muscovite and biotite. The pseudomorphs consist of a cordierite core surrounded by a reaction rim. Modal mineralogy, calculated using the ImageJ processing software based on backscatter images and X‐ray compositional maps, reveals that the core consists of cordierite (53.5%), muscovite (22.8%), biotite (9.1%), quartz (1 0.4%), plagioclase (3.1%) and ilmenite/pyrrhotite and apatite (1.1%) whereas the reaction rim consists of cordierite (1.8%), muscovite (51.6%), biotite (30.4%), quartz (4.3%), plagioclase (10%), garnet (1.2%), ilmenite/pyrrhotite and apatite (0.8%). The net effect of the cordierite breakdown reaction is an increase of 226% in muscovite, 334% in biotite and 323% in plagioclase content and a decrease of 97% in cordierite. The reaction involved exchange of components with the matrix requiring addition of H 2 O, K + , Na + and Ti 4+ and removal of SiO 2 , Mg 2+ and PO 4 3‐ from the reaction site. PT estimates using the garnet–biotite, Ti‐in‐biotite, Na‐in‐cordierite thermometers and the garnet–biotite–muscovite–plagioclase barometer indicate that cordierite breakdown occurred at ~550°C and 3.5 kbar. thermocalc modelling using the bulk rock composition suggests that cordierite is not stable at these conditions, whereas modelling using a thin section‐derived bulk composition indicates that cordierite stability extends to higher pressures, and most likely that the cordierite breakdown was not PT dependent. The incorporation of Na (up to 0.18 a.f.u.) into the cordierite structure has the effect of stabilizing the cordierite under a variety of H 2 O activity and limiting the role of fluids into destabilizing it. The cordierite cores contain evidence of plastic and brittle deformation in the form of subgrains and microcracks, which facilitated the infiltration of fluids that destabilized cordierite at constant PT conditions by leaching Na and introducing K. New mica growth along these structural heterogeneities suggests that deformation played an important role promoting breakdown of cordierite to muscovite and biotite.
The Talbot Sub-basin is one of several bimodal volcanic depositional centres of the Mesoproterozoic Bentley Basin in central Australia. It is dominated by rocks of rhyolitic composition and includes ignimbrites, some forming large to super-eruption size deposits. Ferroan, incompatible trace element enriched, A-type compositions, anhydrous mineralogy and clear evidence for local rheomorphism indicate high eruption temperatures, with apparent zircon-saturation temperatures suggesting crystallization at >900°C. Comagmatic basalt is of mantle origin with minor Proterozoic basement contamination. The rhyolites cover the same range of Nd isotope compositions (εNd(1070) +1·24 to –0·96) and La/Nb ratios (1·2–2·1) as the basalts (εNd(1070) +2·1 to –1·1: La/Nb 1·2–2·3) and are compositionally far removed from all older basement and country-rock components (average εNd(1070) = –4, La/Nb = 10). The rhyolites and basalts are cogenetic through a process probably involving both fractional crystallization of mafic magmas and partial melting of recently crystallized mafic rock in a lower crustal intraplate, extraction of dacitic magmas to a voluminous upper crustal chamber system, and separation of rhyolite by processes involving rejuvenation and cannibalization of earlier chamber material. More than 230 000 km3 of parental basalt is required to form the >22 000 km3 of preserved juvenile rhyolite in the Talbot Sub-basin alone, which represents one of the most voluminous known felsic juvenile additions to intracontinental crust. Zircon U–Pb age components are complex and distinct from those of basement and country rock and contain antecrystic components reflecting dissolution–regrowth processes during periodic rejuvenation of earlier-emplaced chamber material without any significant interaction with country rock. The overall duration of magmatism was >30 Myr but can be divided into between two and four separate intervals, each probably of a few hundred thousand years' duration and each probably reflecting one of the distinct lithostratigraphic groups defined in the sub-basin. Neither the composition nor style of felsic and mafic volcanism changes in any significant way from one volcanic event to the next and the range of zircon U–Pb ages indicates that each period utilized and cannibalized the same magma chamber. This volcanism forms a component of the 1090–1040 Ma Giles Event in central Australia, associated with magma-dominated extension at the nexus of the cratonic elements of Proterozoic Australia. This event cannot be reasonably reconciled with any putative plume activity but rather reflects the >200 Myr legacy of enhanced crustal geotherms that followed the final cratonic amalgamation of central Australia.