SUMMARY Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, monitoring and ground motion analyses. A typical step in analysing noise cross-correlation functions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal quality. Spurious NCFs could contaminate the stack, degrade its quality and limit its use. Many methods have been developed to improve the stacking of coherent waveforms, including earthquake waveforms, receiver functions and NCFs. This study systematically evaluates and compares the performance of eight stacking methods, including arithmetic mean or linear stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time–frequency phase-weighted stacking, Nth-root stacking and averaging after applying an adaptive covariance filter. Our results demonstrate that, in most cases, all methods can retrieve clear ballistic or first arrivals. However, they yield significant differences in preserving the phase and amplitude information. This study provides a practical guide for choosing the optimal stacking method for specific research applications in ambient noise seismology. We evaluate the performance using multiple onshore and offshore seismic arrays in the Pacific Northwest region. We compare these stacking methods for NCFs calculated from raw ambient noise (referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization method (referred to as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios, phase dispersion images, convergence rate, temporal changes in the ballistic and coda waves, relative amplitude decays with distance and computational time. We show that robust stacking is the best choice for all applications (velocity tomography, monitoring and attenuation studies) using Raw NCFs. For applications using One-bit NCFs, all methods but phase-weighted and Nth-root stacking are good choices for seismic velocity tomography. Linear, robust and selective stacking methods are all equally appropriate choices when using One-bit NCFs for monitoring applications. For applications relying on accurate relative amplitudes, the linear, robust, selective and cluster stacking methods all perform well with One-bit NCFs. The evaluations in this study can be generalized to a broad range of time-series analysis that utilizes data coherence to perform ensemble stacking. Another contribution of this study is the accompanying open-source software package, StackMaster, which can be used for general purposes of time-series stacking.
<p>Supershear earthquakes are rare but powerful ruptures with devastating consequences. How quickly an earthquake rupture attains this speed, or for that matter decelerates from it, strongly affects high-frequency ground motion and the spatial extent of coseismic off-fault damage.&#160;Traditionally, studies of supershear earthquakes have focused on determining which fault segments sustained fully-grown supershear ruptures. Knowing that the rupture first propagated at subshear rupture speeds, these studies usually guessed&#160;an approximate location for the transition from subshear to supershear regimes.&#160;The rarity of confirmed supershear ruptures, combined with the fact that conditions for supershear transition are still debated, complicates the investigation of supershear transition in real earthquakes.&#160;Here, we find a unique signature of the location of a supershear transition: we show that, when a rupture accelerates towards supershear speed, the stress concentration abruptly shrinks, limiting the off-fault damage and aftershock productivity.&#160;First, we use theoretical fracture mechanics to demonstrate that, before transitioning to supershear, the stress concentration around the rupture tip shrinks, confining the region where damage & aftershocks are expected. Then, employing two different dynamic rupture modeling approaches, we confirm such reduction in stress concentration, further validating the expected signature in the transition region. We contrast these numerical and theoretical results with high-resolution aftershock catalogs for three natural supershear earthquakes, where we identify a small region with lower aftershock density near the supershear transition. Finally, using satellite optical image correlation techniques, we show that, for a fourth event, the transition zone is characterized by a diminution in the width of the damage zone.&#160;Our results demonstrate that the transition from subshear to supershear rupture can be clearly identified by a localized absence of aftershocks, and a decrease in off-fault damage, due to a transient reduction of the stress intensity at the rupture tip.</p>
Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, monitoring, and ground motion analyses. A typical step in analyzing Noise Cross-correlation Functions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal quality. Spurious NCFs could contaminate the stack, degrade its quality, and limit its use. Many methods have been developed to improve the stacking of coherent waveforms, including earthquake waveforms, receiver functions, and NCFs. This study systematically evaluates and compares the performance of eight stacking methods, including arithmetic mean or linear stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time-frequency phase-weighted stacking, $N^{th}$-root stacking, and averaging after applying an adaptive covariance filter. Our results demonstrate that, in most cases, all methods can retrieve clear ballistic or first arrivals. However, they yield significant differences in preserving the phase and amplitude information. This study provides a practical guide for choosing the optimal stacking method for specific research applications in ambient noise seismology. We evaluate the performance using multiple onshore and offshore seismic arrays in the Pacific Northwest region. We compare these stacking methods for NCFs calculated from raw ambient noise (referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization method (referred to as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios, phase dispersion images, convergence rate, temporal changes in the ballistic and coda waves, relative amplitude decays with distance, and computational time. We show that robust stacking is the best choice for all applications (velocity tomography, monitoring, and attenuation studies) using Raw NCFs. For applications using One-bit NCFs, all methods but phase-weighted, time-frequency phase-weighted, and $N^{th}$-root stacking are good choices for seismic velocity tomography. Linear, robust, and selective stacking methods are all equally appropriate choices when using One-bit NCFs for monitoring applications. For applications relying on accurate relative amplitudes, both the robust and cluster stacking methods perform well with One-bit NCFs. The evaluations in this study can be generalized to a broad range of time-series analysis that utilizes data coherence to perform ensemble stacking. Another contribution of this study is the accompanying open-source software, which can be used for general purposes in time-series stacking.
We monitored the time history of the velocity change (dv/v) from 2002 to 2022 to investigate temporal changes in the physical state near the Parkfield Region of the San Andreas Fault throughout the interseismic period. Following the coseismic decrease in dv/v caused due to the 2003 San Simeon and the 2004 Parkfield earthquakes, the dv/v heals logarithmically and shows a net long-term increase in which the current dv/v level is equivalent to, or exceeding, the value before the 2003 San Simeon earthquake. We investigated this long-term trend by fitting the model accounting for the environmental and coseismic effects to the channel-weighted dv/v time series. We confirmed with the metrics of AIC and BIC that the additional term of either a linear trend term, or a residual healing term for the case where the healing had not been completed before the San Simeon earthquake occurred, robustly improved the fit to the data. We eventually evaluated the sensitivity of the dv/v time history to the GNSS-derived strain field around the fault. The cumulative dilatational strain spatially averaged around the seismic stations shows a slight extension, which is opposite to what would be expected for an increase in dv/v. However, the cumulative rotated axial strain shows compression in a range near the maximum contractional horizontal strain (azimuth of N35°W to N45°E), suggesting that the closing of pre-existing microcracks aligned perpendicular to the axial contractional strains would be a candidate to cause the long-term increase observed in the multiple station pairs.
<p>Off-fault damage is observed around fault cores in a wide range of length scales, which is identified as an aggregation of localized fractures via geological and geodetic observations, or as low-velocity zone via seismological tomography. However, its seismological observables in earthquake traces, e.g. change in source spectra and/or radiation pattern, remains to be investigated.&#160;</p><p>Okubo et al. (2019) proposed an approach framework of physics-based dynamic earthquake rupture modeling with coseismic off-fault damage using the combined finite-discrete element method (FDEM). It shows a non-negligible contribution of coseismic damage to rupture dynamics, high-frequency radiation and overall energy budget, whereas the model domain is limited in the near-field region. This study efficiently computes intermediate- and far-field radiation propagating from earthquake sources with coseismic off-fault damage, and to identify its signature in the seismic traces.</p><p>We first conduct the dynamic earthquake rupture with coseismic damage and compute synthetic near-field radiation using FDEM-based software tool, HOSSedu, developed by Los Alamos National Laboratory. We then couple the output of HOSSedu to SPECFEM2D in order to compute intermediate- and far-field radiation. The HOSS-SPECFEM2D coupling can resolve complexities over wide range of length scales associated with earthquake sources with coseismic damage and wave propagation.</p><p>We conduct 2D dynamic earthquake rupture modeling with a finite planar fault as canonical simplest model. The comparison between the cases with and without allowing for coseismic off-fault damage shows differences in intermediate- and far-field radiation. 1) High-frequency components in ground motion are enhanced all around the fault. 2) The rupture arresting phase, which clearly appears at the stations located orthogonal to the fault for the case without off-fault damage, is damped due to the smoothed rupture arrest by coseismic damage around fault edges. 3) Radiated energy is enhanced in the direction parallel to the fault due to the substantial damage around fault edges.</p><p>These fundamental observables will help identify the existence of coseismic off-fault damage in real earthquakes. It would also contribute to resolve the mechanisms of earthquake sources and the potential distribution of aftershock locations. We also attempt to replace the planar fault to the real fault geometry, e.g. the fault system associated with the 2019 Ridgecrest earthquake sequence, and will investigate the signature of off-fault damage in the seismic traces recorded in intermediate- and far-field range.</p>
Abstract Fracture damage patterns around faults induced by dynamic earthquake rupture are an invaluable record to clarify the rupture process on complex fault networks. The 2016 M w 7.8 Kaikōura earthquake in New Zealand has been reported as one of the most complex earthquakes ever documented that ruptured at least 15 crustal faults. High‐resolution optical satellite image displacement maps provide distinctive profiles of displacement across the faults and help visualize the off‐fault damage pattern. They are combined with field observation and coupled with a numerical tool that captures the dynamics of the rupture and simultaneous activation of off‐fault damage to allow the determination of the most likely rupture scenario. This study demonstrates that complex rupture processes can be explained in a rather simple way via a synergetic combination of state‐of‐the‐art observation and first principle physics‐based numerical modeling of off‐fault damage.
<p>Thrust faults are commonly known to produce significant amounts of slip, damage and ground acceleration, especially close to the free surface. The effect of the free surface on faulting has always been a standing issue in theoretical mechanics. While static solutions exist, they still cannot explain the large amounts of slip, damage and ground acceleration observed on low dipping faults. Dynamics effects raised by the presence of a free surface were first evaluated by Brune [1996] using analog experiments, which hinted at a torque mechanism induced in the hanging wall leading to a natural reduction in elastic compressive normal stress as the rupture approaches the surface. This solution was recently supported by preliminary work from Gabuchian et al. [2017], which, combining numerical and experimental simulations, also showed that the earthquake rupture, propagating up dip, induces rotation of the hanging wall, and might promote fault opening.</p><p><br>In this work, we take advantage of new numerical algorithms for dynamic modeling of earthquake rupture to confirm and document this opening effect. We use enhanced numerical solutions for earthquake rupture, based on the Combined Finite-Discrete Element Methodology (FDEM), which were recently developed by the Los Alamos National Laboratory. Through a systematic analysis of case studies, we investigate the effect of fault geometry, friction parameters and rupture behavior on the deformation pattern. Fault opening is observed in all simulations, growing dramatically as the rupture reaches the surface. Evolution of slip, fault-normal displacement and velocities, and of the predicted surface displacements and velocities are documented for each simulation. These predictions will serve as synthetic data when comparing with recorded surface deformation from real-case earthquakes.</p>
<p>Thrust faults are commonly known to produce significant amounts of slip, damage and ground acceleration, especially close to the free surface. The effect of the free surface on faulting has always been a standing issue in theoretical mechanics. While static solutions exist, they still cannot explain the large amounts of slip, damage and ground acceleration observed on low dipping faults. Dynamics effects raised by the presence of a free surface were first evaluated by Brune [1996] using analog experiments, which hinted at a torque mechanism induced in the hanging wall leading to a natural reduction in elastic compressive normal stress as the rupture approaches the surface. This solution was recently supported by preliminary work from Gabuchian et al. [2017], which, combining numerical and experimental simulations, also showed that the earthquake rupture, propagating up dip, induces rotation of the hanging wall, and might promote fault opening.</p><p><br>In this work, we use enhanced numerical solutions for earthquake rupture, based on the Combined Finite-Discrete Element Methodology (FDEM), which were recently developed by the Los Alamos National Laboratory, to carry out dynamic rupture simulations on thrust faults to characterize this opening effect and investigate the physical mechanism responsible for it. Through a systematic analysis of case studies, we explore the effect of fault geometry and friction properties on rupture behavior and its associated deformation pattern. We observe that fault opening occurs in all our simulations and increases significantly as the rupture reaches the free surface and for low dip-angle faults.We document the evolution of different metrics such as slip, slip rate, fault-normal displacement and velocities, as well as the displacements and velocities on the free surface to identify near-field deformation features that will serve as synthetic data when comparing with recorded surface deformation from real-case earthquakes.</p>