Abstract Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass‐wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (∼930 to ∼900 ka, ∼810 to ∼760 ka, and ∼190 to ∼120 ka) that coincide with periods of increased volcano instability and mass‐wasting. The youngest of these periods marks the peak in activity at the Soufrière Hills volcano. The largest flank collapse of this volcano (∼130 ka) occurred toward the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km 3 ) flank collapses of the Soufrière Hills edifice, and their timing also coincides with periods of rapid sea level rise (>5 m/ka). Available age data from other island arc volcanoes suggest a general correlation between the timing of large landslides and periods of rapid sea level rise, but this is not observed for volcanoes in intraplate ocean settings. We thus infer that rapid sea level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean‐island settings.
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Abstract Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial data sets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here we discuss a marine record of eruptive and mass‐wasting events spanning ∼250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high‐resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils, and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlations of these events across sediment cores collected offshore of the south and south west of Montserrat have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density‐currents traveled at least 33 km offshore and demonstrate that marine deposits, produced by eruption‐fed and mass‐wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Montserrat now provides one of the most complete datasets for understanding the character and tempo of hazardous events at volcanic islands. Much of the erupted material ends up offshore, and this offshore record may be easier to date due to intervening hemiplegic sediments between event beds. The offshore dataset includes the first scientific drilling of volcanic island landslides during IODP Expedition 340, together with an unusually comprehensive set of shallow sediment cores and 2-D and 3-D seismic surveys. Most recently in 2013, Remotely Operated Vehicle (ROV) dives mapped and sampled the surface of the main landslide deposits. This contribution aims to provide an overview of key insights from ongoing work on IODP Expedition 340 Sites offshore Montserrat.Key objectives are to understand the composition (and hence source), emplacement mechanism (and hence tsunami generation) of major landslides, together with their frequency and timing relative to volcanic eruption cycles. The most recent major collapse event is Deposit 1, which involved ~1.8 km cubed of material and produced a blocky deposit at ~12-14ka. Deposit 1 appears to have involved not only the volcanic edifice, but also a substantial component of a fringing bioclastic shelf, and material locally incorporated from the underlying seafloor. This information allows us to test how first-order landslide morphology (e.g. blocky or elongate lobes) is related to first-order landslide composition. Preliminary analysis suggests that Deposit 1 occurred shortly before a second major landslide on the SW of the island (Deposit 5). It may have initiated English's Crater, but was not associated with a major change in magma composition. An associated turbidite-stack suggests it was emplaced in multiple stages, separated by at least a few hours and thus reducing the tsunami magnitude. The ROV dives show that mega-blocks in detail comprise smaller-scale breccias, which can travel significant distances without complete disintegration. Landslide Deposit 2 was emplaced at ~130ka, and is more voluminous (~8.4km cubed). It had a much more profound influence on the magmatic system, as it was linked to a major explosive mafic eruption and formation of a new volcanic centre (South Soufriere Hills) on the island. Site U1395 confirms a hypothesis based on the site survey seismic data that Deposit 2 includes a substantial component of pre-existing seafloor sediment. However, surprisingly, this pre-existing seafloor sediment in the lower part of Deposit 2 at Site U1395 is completely undeformed and flat lying, suggesting that Site U1395 penetrated a flat lying block. Work to date material from the upper part of U1396, U1395 and U1394 will also be summarised. This work is establishing a chronostratigraphy of major events over the last 1 Ma, with particularly detailed constraints during the last ~250ka. This is helping us to understand whether major landslides are related to cycles of volcanic eruptions.
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial datasets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally-constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here, we discuss a marine record of eruptive and mass-wasting events spanning ~250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlation of these events across sediment cores collected offshore of the south and south west of Montserrat, have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents travelled at least 33 km offshore, and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Abstract IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island‐arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low‐gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat‐lying block of intact strata. The most likely mechanism for generating these large‐scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block‐rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high‐resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
IODP Expedition 340 successfully drilled, for the first time, large and likely tsunamigenic volcanic island arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition, origin, and mode of transport of those deposits. Sites in the medial to distal parts of the landslide deposits offshore Montserrat and Martinique recovered seafloor sediment, comprising turbidites and hemipelagic deposits, and lacked the coarse and chaotic subaerial volcanic debris avalanche material. This supports the concepts that (i) the volcanic debris avalanche component of these landslides is restricted to proximal areas and tends to stop at the slope break and (ii) emplacement of volcanic debris avalanches in marine settings can trigger widespread and voluminous failures of preexisting low-gradient seafloor sediment. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be the propagation of a décollement, from proximal areas that are loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation by volcanic island landslides. Volcanic island landslides composed of mainly seafloor sediment may form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water.
This data report focuses on Holes U1394B, U1395B, and U1396C located offshore Montserrat.These holes were drilled during Integrated Ocean Drilling Program Expedition 340 and contain deposits associated with the growth and decay of the volcanic island of Montserrat.Hole U1394B dates to ~353 ka and is composed of 17 bioclastic turbidites, 24 mixed turbidites, 55 volcaniclastic turbidites, and 32 tephra fall layers within a background stratigraphy of hemipelagic marine mud.Hole U1395B dates to older than 1 Ma and contains 18 bioclastic turbidites, 27 mixed turbidites, 43 volcaniclastic turbidites, and 52 tephra fall layers.The uppermost 7 m of Hole U1396C covers ~1 My of stratigraphy and contains 1 bioclastic turbidite, 1 mixed turbidite, 9 volcaniclastic turbidites, and 13 tephra fall layers.Tephra fall and some volcaniclastic deposits are associated with episodes of island building, whereas bioclastic turbidites, mixed turbidites, and some volcaniclastic turbidites are associated with large landslide events from Montserrat.
Abstract Studying the older volcanic centers on Montserrat, Centre Hills and Silver Hills, may reveal how volcanic activity can change over long time periods (≥1 Myr), and whether the recent activity at the Soufrière Hills is typical of volcanism throughout Montserrat's history. Here we present the first detailed mapping of the Silver Hills, the oldest and arguably least studied volcanic center on Montserrat. Volcanism at the Silver Hills was dominated by episodic andesite lava dome growth and collapse, produced Vulcanian style eruptions, and experienced periodic sector collapse events, similar to the style of volcanic activity that has been documented for the Centre Hills and Soufrière Hills. We also present an updated geochronology of volcanism on Montserrat, by revising existing ages and obtaining new 40 Ar/ 39 Ar dates and paleomagnetic ages from marine tephra layers. We show that the centers of the Silver, Centre, and Soufrière Hills were active during at least ∼2.17–1.03 Ma, ∼1.14–0.38 Ma, and ∼0.45 Ma to present, respectively. Combined with timings of volcanism on Basse‐Terre, Guadeloupe, these ages suggest that ∼0.5–1 Ma is a common lifespan for volcanic centers in the Lesser Antilles. These new dates identify a previously unrecognized overlap in activity between the different volcanic centers, which appears to be a common phenomenon in island arcs. We also identify an older stage of Soufrière Hills activity ∼450–290 ka characterized by the eruption of hornblende‐orthopyroxene‐phyric lavas, demonstrating that the petrology of the Soufrière Hills eruptive products has changed at least twice throughout the volcano's development.
Montserrat is a small island arc volcano in the Caribbean island arc. The island comprises three main volcanic centres: Silver Hills, active between 2.5-1 Ma; Centre Hills, active between ~1 to 0.5 Ma; and the Soufriere Hills-South Soufriere Hills volcanic complex, active from ~0.3 Ma. Here an extensive (> 1 Ma) and detailed stratigraphic record is compiled for Montserrat using both the subaerial and submarine (in the form of three International Ocean Drilling Program cores) records. This combined record gives valuable insight into the evolution of volcanic and mass-wasting processes at Montserrat, and may be useful for future hazard mitigation. The stratigraphic record shows that eruptive styles, volcanic intensity and mass-wasting processes have varied through time. Dome-style eruptions have dominated the past 1 Ma of volcanic activity at Montserrat. At the older edifice of Centre Hills, regular large-magnitude explosive eruptions (represented by >1m thick pumiceous sequences onshore) also occurred, but such explosive eruptions are rare at the younger Soufriere Hills-South Soufriere Hills volcanic complex. Periods of heightened volcanic activity occurred between 1.1-0.9 Ma, 0.3 Ma, and 0.2-0.1 Ma. Another period of increased volcanism may have also occurred at ~0.5±0.2 Ma. These coincide with periods of increased, mass-wasting, identified at 1.1-0.9 Ma, 0.6-0.5 Ma, 0.3 Ma, and 0.2-0.1 Ma and suggest that increased volcanic activity may facilitate mass-wasting processes. This may be due to increased deposition of material on the island flanks, or increased seismic activity that can trigger collapses. The ages of the largest landslide deposits (volumes >0.3 km3) observed offshore of Montserrat also coincide with periods of faster sea-level rises. Analysing the global database, large landslides coincide with rapid sea-level rise at other island arc volcanoes, but not at ocean islands. The reason for this difference in behavior is unclear, but maybe associated with differences in island composition and size, or tectonic regimes.