Abstract. Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes and GPS radio occultation data, are examined to identify gravity-wave (GW) induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02 °N, 6.46 °E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km and eastward above 20 km during 27–28 July which is also captured by the European Center for Medium range Weather Forecasting (ECMWF) analyses. Ray-tracing experiments indicate the jet-front system to be the source of observed GWs. Simulated vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations ± 40 mms−1 are produced for the dominant mesoscale GW using the simplified linear GW theory. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the specific humidity. Simulated vertical wind perturbations of the dominant GW and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 μm) are in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relation. The observed mesoscale GW induces a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.