Abstract Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term “clastic” so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk’s (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives—hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk’s (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate–siliciclastic ramp settings, and the extreme ends of depositional systems.
Abstract Foraminiferal analyses of 404 contiguous samples, supported by diatom, lithologic, geochronologic and seismic data, reveal both rapid and gradual Holocene paleoenvironmental changes in an 8.21-m vibracore taken from southern Pamlico Sound, North Carolina. Data record initial flooding of a latest Pleistocene river drainage and the formation of an estuary 9000 yr ago. Estuarine conditions were punctuated by two intervals of marine influence from approximately 4100 to 3700 and 1150 to 500 cal yr BP. Foraminiferal assemblages in the muddy sand facies that accumulated during these intervals contain many well-preserved benthic foraminiferal species, which occur today in open marine settings as deep as the mid shelf, and significant numbers of well-preserved planktonic foraminifera, some typical of Gulf Stream waters. We postulate that these marine-influenced units resulted from temporary destruction of the southern Outer Banks barrier islands by hurricanes. The second increase in marine influence is coeval with increased rate of sea-level rise and a peak in Atlantic tropical cyclone activity during the Medieval Climate Anomaly. This high-resolution analysis demonstrates the range of environmental variability and the rapidity of coastal change that can result from the interplay of changing climate, sea level and geomorphology in an estuarine setting.
Abstract Recent research has shown that sedimentological information in barrier-island settings may provide more detailed interpretations of some past coastal environments than interpretations based upon foraminifera. This research investigates whether targeted documentation of modern foraminifera in specific coastal environments can result in higher resolution micropaleontology-based paleoenvironmental reconstructions. Bear Island, North Carolina, characterized by little human disturbance, was chosen for detailed documentation of foraminifera in modern barrier-island-related environments. Modern sediments in all subenvironments were predominantly siliciclastic (< 30 % clastic carbonate debris) in composition: clastic carbonate allochems (e.g., mollusk shell fragments, echinoid spines) were admixed with fine- to medium-grained quartz sand. The hypothesis that modern foraminiferal assemblages of 26 modern coastal subenvironments can be distinguished based upon their foraminiferal assemblages was tested by discriminant analysis and resulted in the recognition of four environmental supergroups: shoreface, ebb-tidal delta, flood-tidal delta/inlet channel, and “barrier-combined” (foreshore, washover, dune, sandflat, spit, longshore bar, and trough). Holocene paleoenvironments represented by foraminiferal assemblages in 16 vibracores collected from the modern inner shelf, shoreface, ebb-tidal delta, and inlet environments of Bogue Banks, immediately adjacent to Bear Island, were interpreted, via discriminant analysis, based upon the modern dataset. Holocene and modern foraminiferal assemblages were similar but variations in species abundance and species diversity allowed for alternative paleoenvironmental classification of core samples at varying levels of probability. The methodology of this research is widely applicable to other coastal environments.