Previous isotope studies of lunar samples have demonstrated that volatile loss was an important part of the early history of the Moon. The radiogenic U-Pb system, where Pb has a significantly lower T50% condensation temperature than U, has the capacity to both recognize and calibrate the extent of volatile loss but this approach has been hindered by terrestrial Pb contamination of samples. We employ a novel method that integrates analyses of individual samples by Ion Microprobe and Thermal Ionization mass spectrometry to correct for ubiquitous common Pb contamination, a method that results in significantly higher estimates for µ-values (238U/204Pb) than previously reported. Using this method, six of seven samples of low-Ti basaltic meteorites return µ-values between 1900 and 9600, values that are consistent with a re-evaluation of published results that return µ-values of 510–2900 for both low- and high-Ti basalts. While some degree of fractionation during partial melting may increase µ-values, we infer that the source region(s) for the basalts must also have had elevated µ-values by the time the lunar magma ocean solidified. Models to account for the available initial Pb isotopic compositions of lunar basalts in light of timing constraints from thermal modelling imply that their source regions had a µ-value of at least 280, consistent with the elevated µ-values of lunar basalts and that inferred for their sources. Such high µ-values are attributed to the preferential loss of more than 99% of the Pb over U relative to a precursor with a Mars-like composition in the aftermath of the giant impact. Such an extensive loss of Pb is consistent with previously reported losses of other elements with comparable volatility, namely Zn, Rb, Ga and CrO2. Finally, our modelling of highly-radiogenic lunar Pb isotopes assuming crystallization of the lunar magma ocean over 10′s of millions of years shows that the elevated µ-values allows for, but does not require, a young Moon formation age.
Precise crystallisation ages have been determined for a range of Apollo basalts from Pb-Pb isochrons generated using Secondary Ion Mass Spectrometry (SIMS) analyses of multiple accessory phases including K-feldspar, K-rich glass and phosphates. The samples analysed in this study include five Apollo 11 high-Ti basalts, one Apollo 14 high-Al basalt, seven Apollo 15 low-Ti basalts, and five Apollo 17 high-Ti basalts. Together with the samples analysed in two previous similar studies, Pb-Pb isochron ages have been determined for all of the major basaltic suites sampled during the Apollo missions. The accuracy of these ages has been assessed as part of a thorough review of existing age determinations for Apollo basalts, which reveals a good agreement with previous studies of the same samples, as well as with average ages that have been calculated for the emplacement of the different basaltic suites at the Apollo landing sites. Furthermore, the precision of the new age determinations helps to resolve distinctions between the ages of different basaltic suites in more detail than was previously possible. The proposed ages for the basaltic surface flows at the Apollo landing sites have been reviewed in light of these new sample ages. Finally, the data presented here have also been used to constrain the initial Pb isotopic compositions of the mare basalts, which indicate a significant degree of heterogeneity in the lunar mantle source regions, even among the basalts collected at individual landing sites.
Despite more than 40 years of studying Apollo samples, the age and early evolution of the Moon remain contentious. Following the formation of the Moon in the aftermath of a giant impact, the resulting Lunar Magma Ocean (LMO) is predicted to have generated major geochemically distinct silicate reservoirs, including the sources of lunar basalts. Samples of these basalts, therefore, provide a unique opportunity to characterize these reservoirs. However, the precise timing and extent of geochemical fractionation is poorly constrained, not least due to the difficulty in determining accurate ages and initial Pb isotopic compositions of lunar basalts. Application of an in situ ion microprobe approach to Pb isotope analysis has allowed us to obtain precise crystallization ages from six lunar basalts, typically with an uncertainty of about ±10Ma, as well as constrain their initial Pb-isotopic compositions. This has enabled construction of a two-stage model for the Pb-isotopic evolution of lunar silicate reservoirs, which necessitates the prolonged existence of high-μ reservoirs in order to explain the very radiogenic compositions of the samples. Further, once firm constraints on U and Pb partitioning behaviour are established, this model has the potential to help distinguish between conflicting estimates for the age of the Moon. Nonetheless, we are able to constrain the timing of a lunar mantle reservoir differentiation event at 4376±18Ma, which is consistent with that derived from the Sm–Nd and Lu–Hf isotopic systems, and is interpreted as an average estimate of the time at which the high-μ urKREEP reservoir was established and the Ferroan Anorthosite (FAN) suite was formed.
Abstract Miller Range ( MIL ) 13317 is a heterogeneous basalt‐bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near‐surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al 2 O 3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare‐highland boundary that is KREEP ‐rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low‐Ti to low‐Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon‐bearing phases and Ca‐phosphate grains in basalt clasts and matrix grains yield 207 Pb/ 206 Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207 Pb/ 206 Pb ages indicate that the meteorite has sampled a range of Pre‐Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.
Abstract Lunar dunite samples 72415–72417, collected by Apollo 17 astronauts from a South Massif boulder in the Taurus–Littrow valley, are crushed breccias composed of several types of olivine‐ and clinopyroxene‐rich clasts, some of which are (or contain) intergrowths of Cr‐spinel and pyroxenes or plagioclase. Among the clasts are ellipsoidal symplectites of Cr‐spinel and pyroxene, up to 300 μm in diameter, which have bulk compositions consistent with those of olivine + garnet. These symplectites are inferred to originally have been olivine + Mg‐Cr‐rich garnet (pyrope–uvarovite) that formed deep in the lunar mantle and were subsequently transported closer to the lunar surface (spinel‐ or plagioclase‐peridotite stability fields), perhaps during gravitationally driven overturn. Abundant microsymplectite (30 μm diameter) intergrowths of Cr‐spinel and pyroxene inside olivine grains, many associated with inclusions of plagioclase and augite, formed during a later decompression event (perhaps excavation to the lunar surface). These inclusions have not previously been recorded in these samples and could be responsible for earlier reports of igneous zoning in olivine. Electron backscatter diffraction data show evidence of high shock pressures (>50 GPa), which are inferred to have occurred during the impact which excavated the dunites from the shallow anorthite‐bearing lunar mantle. Apatite veinlets post‐date the shock metamorphism and have been dated to 3983 ± 72 Ma and 3913 ± 118 Ma by the U–Pb method. This age is consistent with that inferred for the Imbrium impact basin, suggesting that the dunite was finally excavated from the mantle during formation of the Imbrium basin.
Abstract A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well‐established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP ‐ MS ), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites.
Lunar meteorites provide a potential opportunity to expand the study of ancient (>4000 Ma) basaltic volcanism on the Moon, of which there are only a few examples in the Apollo sample collection. Secondary Ion Mass Spectrometry (SIMS) was used to determine the Pb isotopic compositions of multiple mineral phases (Ca-phosphates, baddeleyite K-feldspar, K-rich glass and plagioclase) in two lunar meteorites, Miller Range (MIL) 13317 and Kalahari (Kal) 009. These data were used to calculate crystallisation ages of 4332±2 Ma (95% confidence level) for basaltic clasts in MIL 13317, and 4369±7 Ma (95% confidence level) for the monomict basaltic breccia Kal 009. From the analyses of the MIL 13317 basaltic clasts, it was possible to determine an initial Pb isotopic composition of the protolith from which the clasts originated, and infer a 238U/204Pb ratio (μ-value) of 850±130 (2σ uncertainty) for the magmatic source of this basalt. This is lower than μ-values determined previously for KREEP-rich (an acronym for K, Rare Earth Elements and P) basalts, although analyses of other lithological components in the meteorite suggest the presence of a KREEP component in the regolith from which the breccia was formed and, therefore, a more probable origin for the meteorite on the lunar nearside. It was not possible to determine a similar initial Pb isotopic composition from the Kal 009 data, but previous studies of the meteorite have highlighted the very low concentrations of incompatible trace elements and proposed an origin on the farside of the Moon. Taken together, the data from these two meteorites provide more compelling evidence for widespread ancient volcanism on the Moon. Furthermore, the compositional differences between the basaltic materials in the meteorites provide evidence that this volcanism was not an isolated or localised occurrence, but happened in multiple locations on the Moon and at distinct times. In light of previous studies into early lunar magmatic evolution, these data also imply that basaltic volcanism commenced almost immediately after Lunar Magma Ocean (LMO) crystallisation, as defined by Nd, Hf and Pb model ages at about 4370 Ma.