Tundra and taiga ecosystems comprise nearly 40 % of the terrestrial landscapes of Canada. These permafrost ecosystems have supported humans for more than 4500 years, and are currently home to ca. 115,000 people, the majority of whom are First Nations, Inuit and Métis. The responses of these ecosystems to the regional warming over the past 30–50 years were the focus of four Canadian IPY projects. Northern residents and researchers reported changes in climate and weather patterns and noted shifts in vegetation and other environmental variables. In forest-tundra areas tree growth and reproductive effort correlated with temperature, but seedling establishment was often hindered by other factors resulting in site-specific responses. Increased shrub cover has occurred in sites across the Arctic at the plot and landscape scale, and this was supported by results from experimental warming. Experimental warming increased vegetation cover and nutrient availability in most tundra soils; however, resistance to warming was also found. Soil microbial diversity in tundra was no different than in other biomes, although there were shifts in mycorrhizal diversity in warming experiments. All sites measured were sinks for carbon during the growing season, with expected seasonal and latitudinal patterns. Modeled responses of a mesic tundra system to climate change showed that the sink status will likely continue for the next 50–100 years, after which these tundra systems will likely become a net source of carbon dioxide to the atmosphere. These IPY studies were the first comprehensive assessment of the state and change in Canadian northern terrestrial ecosystems and showed that the inherent variability in these systems is reflected in their site-specific responses to changes in climate. They also showed the importance of using local traditional knowledge and science, and provided extensive data sets, sites and researchers needed to study and manage the inevitable changes in the Canadian North.
Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long-term warming by greenhouses and/or fertilization as part of the Arctic Long-Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long-term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.
The trophic structure of nematode communities, lengths of fungal hyphae, and gross populations of protozoa and bacteria were compared between clearcuts and adjacent forests at three sites in the southern interior of British Columbia in 1996, 1997, and 1998. Total C and N, mineralizable N (anaerobic incubation), and N mineralised during aerobic incubations, were determined from the same soil samples used for biological assays. Net N mineralization did not differ between clearcuts and forests in 1997; in 1998 net N mineralization in the organic horizon was four times greater for forests than for clearcuts. Hyphal lengths and total microbial biomass were greater in forest soil than in clearcut soil. Bacterial abundance was greater in forest soil than in clearcut soil in 1996 only. The abundance of protozoa did not differ between clearcuts and forests. Fungivorous, omnivorous, and predacious nematodes were less abundant in clearcut soil than in forest soil. Bacterivorous nematodes were more abundant in the mineral soil of clearcuts than in forests in 1996, but did not differ between clearcuts and forests in any other combination of year and horizon. Net N mineralization was correlated with the ratio of bacterial biomass/fungal biomass (r = 0.72, 12 degrees of freedom), as well as the abundance of amoebae (r = 0.83), total nematodes (r = 0.80), bacterivorous nematodes (r = 0.74), and fungivorous nematodes (r = 0.83). Key words: Microfauna, nematode ecology, microbial biomass, clearcut harvesting, nitrogen mineralization
ABSTRACT The future climatic niche of interior Douglas‐fir ( Pseudotsuga menziesii var. glauca [Mirb.] Franco) is expected to have little spatial overlap with its current range due to climate change. The resulting misalignment of the climatic niche and species distribution is expected to result in many forests becoming maladapted in their current location, thus increasing vulnerability to disturbance and reducing productivity. This novel study examined the individual and interactive effects of climatic transfer distance and silviculture systems on planted 3‐year‐old Douglas‐fir seedlings across the natural range of interior Douglas‐fir in British Columbia. Several climatic transfer distance variables were considered, and the silviculture systems tested comprised the following gradients of tree retention: 0% retention (clearcut), 10% dispersed retention (seed‐tree), 30% aggregate retention, and 60% aggregate retention with thinning from below. Using linear mixed effect models, we found that survival and height were positively correlated with movements of seedlings to warmer, wetter, and more humid climates. Moisture availability had a stronger influence than temperature, indicating that seedlings transferred to warmer but more arid climates would experience decreased survival and height. Where seedlings were transferred to climates with greater frost frequency or decreased humidity, greater retention of overstory trees improved survival and height. Conversely, movements to more favorable climatic conditions (warmer and wetter) resulted in improved survival and height where overstory retention was low. Our findings suggest that genetic reshuffling of populations through assisted migration could benefit from overstory retention where stressful climatic conditions due to aridity or increased frost frequency occur.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.