High rates of primary production and fast sinking rates lead to the deposition of phytodetritus and highly reactive organic matter to the sediments of the central equatorial Pacific. These substances are responsible for driving important chemical fluxes and fueling benthic organisms. Chloropigments have proven useful as tracers of similar highly reactive organic carbon components in lacustrine and nearshore marine sediments. In this study we investigate the degradation of chlorophyll-a and pheopigments-a at four abyssal sites on the JGOFS equatorial Pacific transect along 140°W and explore the usefulness of these chloropigments as tracers of the most-reactive component of the deep-sea particulate organic carbon (POC) rain. First-order reaction rate constants (k = 1–75 yr−1, half-life 3–250 d) and relative reactivities (chlorophyll-a > allomer and pheophorbide-a > pheophytin-a) derived from most of the sedimentary profiles are similar to those found in laboratory and other field (lake and coastal marine) studies. However, in some profiles, the rate constants determined by fitting data below 0.5 cm are slower by up to 3 orders of magnitude despite an apparent abundance of bacteria, macrofauna, and porewater oxygen. Model results assuming multi-G kinetics suggest that these chloropigments degrade as two components: one, which accounts for at least 99% of the degradation and 11–57% of the sediment inventory, degrades with a half-life of 4–120 days. The other component degrades with a half-life of up to 440 years. These results suggest that some otherwise labile POC may be protected and escape rapid degradation near the sediment-water interface. If phytodetritus is deposited continuously throughout the year, our model-calculated chlorophyll-a fluxes indicate that it could account for 25–100% of the annual POC flux at sites close to the equator.
Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO(2) fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.
We present δ 13 C values for phytol, an algal biomarker, which document up to 7 per mil isotopic enrichment during the IronEx II iron fertilization experiment. We evaluate these data using a laboratory‐derived 13 C fractionation model and show this variability is largely the result of elevated growth rates. Isotopic enrichment and stimulation of growth rate were accompanied by a sevenfold increase in the export of particulate organic carbon as estimated from 234 Th activities. This is the first direct evidence that enhanced productivity following iron enrichment can lead to both increased export of organic matter and an associated isotopic signal in an algal biomarker. On the basis of these results, we propose biomarker isotopic data be used in conjunction with paleo‐CO 2 records to reconstruct paleogrowth rates. This approach provides a means to test for iron‐stimulated changes in algal growth in sedimentary records.
Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.
The effect of nitrogen (N) and phosphorus (P) depletion on the cell volume and pigment composition of the marine dinoflagellate Heterocapsa sp. was studied. Cell size increased under both N or P starvation, but the change was faster when P was limiting. Quantitatively. N deficiency resulted in greater pigment loss than did P deficiency, thereby corroborating the relationship between pigment synthesis and N metabolism. It is suggested that the synthesis of pigments is primarily stopped at a transcriptional level (from DNA to RNA) under P limitation and at a translational level (from RNA to proteins) under N limitation. Almost all pigments underwent a parallel decrease during the stationary phase and no clear changes in pigment ratios were found. As an exception, a pigment identified as diatoxanthin accumulated in the algae when cell growth ceased. This occurred regardless of the growth-limiting nutrient and became more pronounced as cell deterioration progressed.