The spatial organization of biofilms is strongly regulated by chemical cues released by settling organisms. However, the exact nature of these interactions and the repertoire of chemical cues and signals that micro-organisms produce and exude in response to the presence of competitors remain largely unexplored. Biofilms dominated by microalgae often show remarkable, yet unexplained fine-scale patchy variation in species composition. Because this occurs even in absence of abiotic heterogeneity, antagonistic interactions might play a key role. Here we show that a marine benthic diatom produces chemical cues that cause chloroplast bleaching, a reduced photosynthetic efficiency, growth inhibition and massive cell death in naturally co-occurring competing microalgae. Using headspace solid phase microextraction (HS-SPME)-GC-MS, we demonstrate that this diatom exudes a diverse mixture of volatile iodinated and brominated metabolites including the natural product cyanogen bromide (BrCN), which exhibits pronounced allelopathic activity. Toxin production is light-dependent with a short BrCN burst after sunrise. BrCN acts as a short-term signal, leading to daily “cleaning” events around the algae. We show that allelopathic effects are H 2 O 2 dependent and link BrCN production to haloperoxidase activity. This strategy is a highly effective means of biofilm control and may provide an explanation for the poorly understood role of volatile halocarbons from marine algae, which contribute significantly to the atmospheric halocarbon budget.
The melting of the Greenland Ice Sheet is accelerating, with glaciers shifting from marine to land termination and potential consequences for fjord ecosystems downstream. Monthly samples in 2016 in two fjords in southwest Greenland show that subglacial discharge from marine-terminating glaciers sustains high phytoplankton productivity that is dominated by diatoms and grazed by larger mesozooplankton throughout summer. In contrast, melting of land-terminating glaciers results in a fjord ecosystem dominated by bacteria, picophytoplankton and smaller zooplankton, which has only one-third of the annual productivity and half the CO2 uptake compared to the fjord downstream from marine-terminating glaciers.
We characterized the bacterioplankton community and its seasonal dynamics in two neighbouring hypertrophic lakes by denaturing gradient gel electrophoresis (DGGE) analysis of short (193 bp) 16S ribosomal DNA polymerase chain reaction (PCR) products obtained with primers specific for the domain Bacteria. Lake Blankaart is turbid and has a high phytoplankton biomass and episodic cyanobacterial blooms, whereas biomanipulated Lake Visvijver is characterized by clearwater conditions and the establishment of a dense charophyte vegetation. Both lakes were dominated by bacterial groups commonly found in freshwater habitats (e.g. ACK4 cluster of Actinomycetes; ACK stands for clones isolated from the Adirondack mountain lakes). Yet, cluster analysis and principal components analysis (PCA) revealed that taxon composition of the bacterioplankton community of the two lakes differs substantially and consistently throughout the season. During the study year (1998), the bacterioplankton community of both lakes showed a distinct seasonal pattern. Lake Blankaart showed a clear differentiation between winter, spring, summer and autumn. In Lake Visvijver, summer samples differed greatly from spring, autumn and winter samples. We hypothesize that the contrasting bacterioplankton in the two neighbouring shallow lakes is determined largely by the presence or absence of macrophytes.
Our new data address the paradox of Late Ordovician glaciation under supposedly high p CO 2 (8 to 22× PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan (“mixed layer”) marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55°–70° S to ∼40° S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in p CO 2 from a modeled Sandbian level of ∼8× PAL to ∼5× PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction.