Over the past 10 years, studies using high-throughput 16S rRNA gene sequencing have shown that mosquitoes harbor diverse bacterial communities in their digestive system. However, no previous research has examined the total bacteria community inside versus outside of mosquitoes and whether bacteria found on the outside could represent a potential health threat through mechanical transfer. We examined the bacterial community of the external surface and internal body of female Anopheles coluzzii adults collected from homes in Côte d’Ivoire, Africa, by Illumina sequencing of the V3 to V4 region of 16S rRNA gene. Anopheles coluzzii is in the Anopheles gambiae sensu lato (s.l.) species complex and important in the transmission of malaria. The total 16S rRNA reads were assigned to 34 phyla, 73 orders, 325 families, and 700 genera. At the genus level, the most abundant genera inside and outside combined were Bacillus , Staphylococcus , Enterobacter , Corynebacterium , Kocuria , Providencia , and Sphingomonas . Mosquitoes had a greater diversity of bacterial taxa internally compared to the outside. The internal bacterial communities were similar between homes, while the external body samples were significantly different between homes. The bacteria on the external body were associated with plants, human and animal skin, and human and animal infections. Internally, Rickettsia bellii and Rickettsia typhi were found, potentially of importance, since this genus is associated with human diseases. Based on these findings, further research is warranted to assess the potential mechanical transmission of bacteria by mosquitoes moving into homes and the importance of the internal mosquito microbiota in human health.
Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.
The increased hydrothermal activity at the inside corners is interpreted to be controlled by the high-permeability detachment faults at mid-ocean ridges. Paradoxically, no hydrothermal activity is confirmed to be located at the detachment terminations, where the permeability is theoretically maximal. Here, we use a numerical model to investigate the stress state of the Longqi hydrothermal field and Trans‐Atlantic Geotraverse (TAG) hydrothermal field, which are both located on the hanging wall of a detachment fault rather than at detachment terminations. Our results show that the maximum horizontal stress SHmax at the inside corner is deviated from the observed spreading direction by more than 45°. Meanwhile, shear strain is much higher at the insider corner and the distributions of maximal shear strain is consistent with locations of hydrothermal field. We speculate that regional stress rotation and shear strain enhance the regional permeability of the shallow crust, facilitate hydrothermal circulation on the hanging wall and therefore control the location of the hydrothermal field. Our model provides a potential mechanism for the location of the hydrothermal activity in similar geological settings and therefore provides an important constrain for the exploration of seafloor massive sulfide deposits in the future.
Abstract. A high-resolution, 3-dimensional coupled biophysical model is used to simulate ocean circulation and ecosystem variations at the shelfbreak front of the Middle Atlantic Bight (MAB). Favorable comparisons between satellite observations and model hindcast solutions from January 2004 to November 2007 indicate the model has intrinsic skills in resolving fundamental physical and biological dynamics at the MAB shelfbreak. Seasonal and interannual variability of ocean physical and biological states and their driving mechanisms are further analyzed. The domain-wide upper water column nutrient content is found to peak in late winter-early spring. Phytoplankton spring bloom starts 1–2 months later, followed by zooplankton bloom in early summer. Our analysis shows the variability of shelfbreak nutrient supply is controlled by local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column and alongshore nutrient transport by the shelfbreak jet and associated currents. Nutrient vertical advection associated with the shelfbreak bottom boundary layer convergence is another significant contributor. Spring mean nutrient budget diagnostics along the Nantucket transect are compared between nutrient rich 2004 and nutrient poor 2007. Physical advection and diffusion play the major role in determining strong interannual variations in shelfbreak nutrient content. The biological (source minus sink) term is very similar between these two years.
Chiggers are larval mites that pose a significant health risk globally via the spread of scrub typhus. However, fundamental studies into the bacterial microbiome in North America have never been considered. In this investigation, chiggers were collected in the wild from two locally common rodent host species (i.e., Sigmodon hispidus and Peromyscus leucopus ) in three different ecoregions of North Carolina (NC), United States to investigate the composition of their bacterial communities, including potential pathogens. DNA was extracted from the chiggers, and the V3-V4 regions of the bacterial 16S rRNA gene were sequenced using next-generation sequencing (NGS). Alpha diversity metrics revealed significant differences in bacterial diversity among different collection counties. Beta diversity metrics also revealed that bacterial communities across counties were significantly different, suggesting changes in the microbiome as the environment changed. Specifically, we saw that the two western NC collection counties had similar bacterial composition as did the two eastern collection counties. In addition, we found that the chigger microbiome bacterial diversity and composition differed between rodent host species. The 16S rRNA sequence reads were assigned to 64 phyla, 106 orders, 199 families, and 359 genera. The major bacterial phylum was Actinobacteria. The most abundant species were in the genera Corynebacterium , Propionibacterium , class ZB2, and Methylobacterium . Sequences derived from potential pathogens within the genera Orientia and Rickettsia were also detected. Our findings provide the first insights into the ecology of chigger microbiomes in the US. Further research is required to determine if the potential pathogens found detected in chiggers are a threat to humans and wildlife.