SUMMARY We present a new approach to simulate high-frequency seismic wave propagation in and under the oceans. Based upon AxiSEM3D, this method supports a fluid ocean layer, with associated water-depth phases and seafloor topography (bathymetry). The computational efficiency and flexibility of this formulation means that high-frequency calculations may be carried out with relatively light computational loads. A validation of the fluid ocean implementation is shown, as is an evaluation of the oft-used ocean loading formulation, which we find breaks down at longer periods than was previously believed. An initial consideration of the effects of seafloor bathymetry on seismic wave propagation is also given, wherein we find that the surface waveforms are significantly modified in both amplitude and duration. When compared to observed data from isolated island stations in the Pacific, synthetics which include a global ocean and seafloor topography appear to more closely match the observed waveform features than synthetics generated from a model with topography on the solid surface alone. We envisage that such a method will be of use in understanding the new and exciting ocean-bottom and floating seismometer data sets now being regularly collected.
Abstract To date, eight meteoroid impacts have been identified in the seismic record of NASA's InSight mission on Mars, occurring either within 300 km or beyond 3,500 km. We report the association of a high‐frequency marsquake, S0794a, with a new 21.5‐m‐diameter impact crater discovered at an intermediate distance of 1,640 km in the tectonically active Cerberus‐Fossae graben system. This impact enables the direct comparison between surface and subsurface sources, as well as providing the first data point in the critical gap between previous impacts, both in distance and crater size. Additionally, the location of this event necessitates a reassessment of assumed seismic raypaths that were thought to propagate along a slow crustal waveguide. We find that the raypaths instead penetrate and travel through the faster mantle, implying numerous identified marsquake epicenters should be relocated up to two times farther from InSight, with implications for seismically derived impact rates and regional seismicity.
Abstract The entry, descent, and landing (EDL) sequence of NASA's Mars 2020 Perseverance Rover will act as a seismic source of known temporal and spatial localization. We evaluate whether the signals produced by this event will be detectable by the InSight lander (3,452 km away), comparing expected signal amplitudes to noise levels at the instrument. Modeling is undertaken to predict the propagation of the acoustic signal (purely in the atmosphere), the seismoacoustic signal (atmosphere‐to‐ground coupled), and the elastodynamic seismic signal (in the ground only). Our results suggest that the acoustic and seismoacoustic signals, produced by the atmospheric shock wave from the EDL, are unlikely to be detectable due to the pattern of winds in the martian atmosphere and the weak air‐to‐ground coupling, respectively. However, the elastodynamic seismic signal produced by the impact of the spacecraft's cruise balance masses on the surface may be detected by InSight. The upper and lower bounds on predicted ground velocity at InSight are 2.0 × 10 −14 and 1.3 × 10 −10 m s −1 . The upper value is above the noise floor at the time of landing 40% of the time on average. The large range of possible values reflects uncertainties in the current understanding of impact‐generated seismic waves and their subsequent propagation and attenuation through Mars. Uncertainty in the detectability also stems from the indeterminate instrument noise level at the time of this future event. A positive detection would be of enormous value in constraining the seismic properties of Mars, and in improving our understanding of impact‐generated seismic waves.
Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems, and the critical conditions which enable magmas to move, or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics and beyond into the environmental impacts of that eruption: we are trying to define how processes occur, their rates and timings, their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The detailed, in-situ, characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior.
Seismic observations of impacts on Mars indicate a higher impact flux than previously measured. Using six confirmed seismic impact detections near the NASA InSight lander and two distant large impacts, we calculate appropriate scalings to compare these rates with lunar-based chronology models. We also update the impact rate from orbital observations using the most recent catalog of new craters on Mars. The snapshot of the current impact rate at Mars recorded seismically is higher than that found using orbital detections alone. The measured rates differ between a factor of 2 and 10, depending on the diameter, although the sample size of seismically detected impacts is small. The close timing of the two largest new impacts found on Mars in the past few decades indicates either a heightened impact rate or a low-probability temporal coincidence, perhaps representing recent fragmentation of a parent body. We conclude that seismic methods of detecting current impacts offer a more complete dataset than orbital imaging.
Template matching has become a cornerstone technique of observational seismology. By taking known events, and scanning them against a continuous record, new events smaller than the signal-to-noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues. Template matching is normally used in an array setting, however as we move into the era of planetary seismology, we are likely to apply template matching for very small arrays or even single stations. Given the high impact of planetary seismology studies on our understanding of the structure and dynamics of non-Earth bodies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we estimate a lower bound on the rate of false positives for single-station template matching by examining the behaviour of correlations of totally uncorrelated white noise. We find that, for typical processing regimes and match thresholds, false positives are likely quite common. We must therefore be exceptionally careful when considering the output of template matching in the small-n setting.
Ben Fernando, Jessica Wade and Kenza Tazi report on the results of a horticultural experiment, a small part of the Royal Horticultural Society's Rocket Science project.
Template matching has become a cornerstone technique of observational seismology. By taking known events, and scanning them against a continuous record, new events smaller than the signal-to-noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues. Template matching is normally used in an array setting, however as we move into the era of planetary seismology, we are likely to apply template matching for very small arrays or even single stations. Given the high impact of planetary seismology studies on our understanding of the structure and dynamics of non-Earth bodies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we estimate a lower bound on the rate of false positives for single-station template matching by examining the behaviour of correlations of totally uncorrelated white noise. We find that, for typical processing regimes and match thresholds, false positives are likely quite common. We must therefore be exceptionally careful when considering the output of template matching in the small-n setting.