We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.
Various water-soluble inorganic compounds, including Na+, NH4+, K+, Ca2+, Mg2+, Cl–, NO3–, PO43– and SO42–, were analyzed in 130 sets of size-segregated (< 0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2 and 7.2–10.0 µm) aerosol samples collected from March 2013 to April 2014 in Guangzhou, China. SO42– was unimodally distributed and peaked during a typical droplet mode (0.49–0.95 µm). However, the distribution of NO3– significantly varied across the four seasons. It was unimodally distributed in summer and autumn, peaking in the coarse mode (3.0–7.2 µm), and bimodally distributed in winter and spring, peaking in the size ranges of 0.49–0.95 µm and 3.0–7.2 µm, respectively. The coarse-mode NO3– was mainly related to the influence of soil/dust. The additional mode during winter and spring was attributable to the formation of ammonium nitrate. Compared to clean days, polluted days favored the formation of SO42– in summer and autumn and NO3– in winter and spring. The sulfur oxidation ratios (SORs) for < 0.49, 0.49–0.95 and 0.95–1.5 µm particles were negatively correlated with the relative humidity (RH) in spring, summer and autumn, respectively. However, the SORs for 0.49–3.0 µm particles were positively correlated with the RH in winter, implying an important contribution from the aqueous oxidation of SO2. Further analysis shows that the SO42– in < 0.49 µm particles was formed primarily through gas-phase photochemical oxidation of SO2 during all four seasons. The formation of NO3– was mainly attributable to heterogeneous reactions for 1.5–3.0 µm particles year-round and homogeneous gas-phase reactions for < 0.49 µm particles in winter. Correlation analysis also indicates a positive influence from biomass burning on the formation of nitrate and sulfate. The average pH of PM3 was calculated to be 2.6–5.6. Thus, the aqueous oxidation of SO2 by NO2 plays a limited role in the formation of sulfate in the atmosphere of Guangzhou.
Abstract. Aerosol hygroscopicity strongly influences the number size distribution, phase state, optical properties, and multiphase chemistry of aerosol particles. Due to the large number of organic species in atmospheric aerosols, the determination of the hygroscopicity of ambient aerosols remains challenging. In this study, we measured the hygroscopic properties of 23 organics, including carboxylic acids, amino acids, sugars, and alcohols, using a hygroscopicity tandem differential mobility analyzer (HTDMA). Earlier studies have characterized the hygroscopicity either for a limited number of organic compounds using similar techniques or for particles at sizes beyond the microscale range or even bulk samples using other methodologies. Here, we validate these studies and extend the data by measuring the hygroscopicity of a broader suite of organics for particles with sizes under the submicrometer range that are more atmospherically relevant. Moreover, we systematically evaluate the roles of that related physicochemical properties play in organic hygroscopicity. We show that the hygroscopicity of organics varies widely with functional groups and organics with the same carbon number but that more functional groups show higher hygroscopicity. However, some isomers that are very similar in molecular structure show quite different hygroscopicity, demonstrating that other physicochemical properties, such as water solubility, may contribute to their hygroscopicity as well. If the organics are fully dissolved in water (solubility >7×10-1 g mL−1), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5×10-4 g mL−1 < solubility < 7×10-1 g mL−1), we observed that some of them show no obvious water uptake, which is probably due to the fact that they may not deliquesce under our studied conditions up to 90 % relative humidity (RH). The other type of slightly soluble organic material is moderately hygroscopic, and the larger its solubility is, the higher its hygroscopicity will be. Moreover, the hygroscopicity of organics generally increased with O:C ratios, although this relationship is not linear.
Abstract. Effective density is one of the most important physical properties of atmospheric particles. It is closely linked to particle chemical composition and morphology, and could provide special information on particle emissions and aging processes. In this study, size-resolved particle effective density was measured with a combined DMA-CPMA-CPC system in Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN) in autumn 2019. With a new developed flexible Gaussian fit algorithm, frequent (77–87 %) bimodal distribution of particle effective density is identified, with a low-density mode (named sub-density mode) accounting for 22–27 % of total observed particles. The prevalence of the sub-density mode is closely related to fresh black carbon (BC) emissions. The geometric mean for the main-density mode (eff,main) increases from 1.18 g cm−3 (50 nm) to 1.37 g cm−3 (300 nm) due to larger fraction of high-density components and more significant restructuring effect at large particle sizes, but decreases from 0.89 g cm−3 (50 nm) to 0.62 g cm−3 (300 nm) for the sub-density mode (eff,sub) ascribed to the agglomerate effect. eff,main and eff,sub show similar diurnal cycles with peaks in the early afternoon, mainly attributed to the increasing mass fraction of high material density components associated with secondary aerosol production, especially of secondary inorganic aerosol (SIA). To investigate the impact of chemical composition, bulk particle effective density was calculated based on measured chemical composition (ρeff,ACSM) and compared with the average effective density at 300 nm (eff,tot,300 nm). The best agreement between the two densities is achieved when assuming a BC effective density of 0.60 g cm−3. The particle effective density is highly dependent on SIA and BC mass fractions. The influence of BC on the effective density is even stronger than SIA, implying the importance and necessity of including BC in the estimate of effective density for ambient particles.
Abstract. Aerosol hygroscopicity strongly influences the number size distribution, phase state, optical properties, and multiphase chemistry of aerosol particles. Due to the large number of organic species in atmospheric aerosols, the determination of the hygroscopicity of ambient aerosols remains challenging. In this study, we measured the hygroscopic properties of 23 organics, including carboxylic acids, amino acids, sugars, and alcohols, using a hygroscopicity tandem differential mobility analyzer (HTDMA). Earlier studies have characterized the hygroscopicity either for a limited number of organic compounds using similar techniques or for particles at sizes beyond the microscale range or even bulk samples using other methodologies. Here, we validate these studies and extend the data by measuring the hygroscopicity of a broader suite of organics for particles with sizes under the submicrometer range that are more atmospherically relevant. Moreover, we systematically evaluate the roles of that related physicochemical properties play in organic hygroscopicity. We show that the hygroscopicity of organics varies widely with functional groups and organics with the same carbon number but that more functional groups show higher hygroscopicity. However, some isomers that are very similar in molecular structure show quite different hygroscopicity, demonstrating that other physicochemical properties, such as water solubility, may contribute to their hygroscopicity as well. If the organics are fully dissolved in water (solubility âgâmLâ1), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: âgâmLâ1< solubility <âgâmLâ1), we observed that some of them show no obvious water uptake, which is probably due to the fact that they may not deliquesce under our studied conditions up to 90â% relative humidity (RH). The other type of slightly soluble organic material is moderately hygroscopic, and the larger its solubility is, the higher its hygroscopicity will be. Moreover, the hygroscopicity of organics generally increased with O:C ratios, although this relationship is not linear.
Abstract. To estimate how atmospheric aerosol particles respond to chemical properties of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountain Range (1,690 m a.s.l.), South China, in January 2016. The cloud residues were classified into nine particle types: Aged elemental carbon (EC), Potassium-rich (K-rich), Amine, Dust, Pb, Fe, Organic carbon (OC), Sodium-rich (Na-rich) and Other. The largest fraction of the cloud residues was the aged EC type (49.3 % by number), followed by the K-rich type (33.9 % by number). Abundant aged EC cloud residues that internally mixed with inorganic salts were found in air masses from northerly polluted areas. The number fraction (Nf) of the K-rich cloud residues significantly increased within southwesterly air masses from fire activities in Southeast Asia. In addition, the Amine particles represented 0.2 % to 15.1 % by number to the cloud residues when air masses changed from northerly to southwesterly sources. The Dust, Fe, Pb, Na-rich and OC particles had a low contribution (0.5–4.1 % by number) to the cloud residues. An analysis of the mixing state of cloud residues showed that the Dust and Na-rich cloud residues were highly associated with nitrate. Sulfate intensity increased in the aged EC and OC cloud residues and decreased in the Dust and Na-rich cloud residues relative to both ambient and interstitial particles. A comparison of cloud residues with interstitial particles indicated that a higher Nf for K-rich particles and a lower Nf for the aged EC particles were found in the cloud residues. Relative to the ambient and interstitial particles, the cloud residues exhibited larger size distributions. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China. This study increases our understanding of the impacts of aerosols on cloud droplets in a remote area of China.
Coal-to-gas (replacing coal with natural gas) is an important energy transformation strategy for addressing environmental, but the improvement of atmospheric Pb pollution from coal-to-gas remains poorly understood. Beijing has basically realized coal-free in urban and plain areas by the end of 2018. A single particle aerosol mass spectrometry (SPAMS) was deployed to investigate the mixing state and chemical processing of Pb-rich particles in urban Beijing in 2019. Based on a large dataset of mass spectra, this study find K-Na-EC and K-OC particles associated with coal combustion. The contribution of coal combustion to atmospheric Pb decreased significantly, and iron/steel industries are the most important source of Pb after coal-to-gas. The atmospheric Pb in Beijing urban area is mainly transmitted from surrounding provinces such as Mongolia Province, Hebei Province, Liaoning Province, Anhui Province and Shandong Province. These Pb in Pb-rich particles are mainly in the form of Pb(NO3)2, through photochemical and/or aqueous phase reactions of PbCl2 and HNO3 and/or NO2 in the gas phase. These results assess the effect of coal-to-gas on the source structure and mixing state of Pb particles, and indicate that Pb pollution still needs to be paid attention to because Pb(NO3)2 abundance increases with improved control quality.
Abstract. The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei (CCN) activity are incompletely understood. We used a ground-based counterflow virtual impactor (GCVI) coupled with a single-particle aerosol mass spectrometer (SPAMS) to characterize chemical composition of submicron (dry diameter of 0.2–1.0 µm) and supermicron (1.0–2.0 µm) sea-salt-containing cloud residues (dried cloud droplets) at Mount Nanling, southern China. Seven cut sizes (7.5–14 µm) of cloud droplets were set in the GCVI system. The highest number fraction of sea-salt-containing particles was observed at the cut size of 7.5 µm (26 %, by number), followed by 14 µm (17 %) and the other cut sizes (3 %–5 %). The submicron sea-salt-containing cloud residues contributed approximately 20 % (by number) at the cut size of 7.5 µm, which was significantly higher than the percentages at the cut sizes of 8–14 µm (below 2 %). This difference was likely involved in the change in the chemical composition. At the cut size of 7.5 µm, nitrate was internally mixed with over 90 % of the submicron sea-salt-containing cloud residues, which was higher than sulfate (20 %), ammonium (below 1 %), amines (6 %), hydrocarbon organic species (2 %), and organic acids (4 %). However, at the cut sizes of 8–14 µm, nitrate, sulfate, ammonium, amines, hydrocarbon organic species, and organic acids were internally mixed with > 90 %, > 80 %, 39 %–84 %, 71 %–86 %, 52 %–90 %, and 32 %–77 % of the submicron sea-salt-containing cloud residues. The proportion of sea-salt-containing particles in the supermicron cloud residues generally increased as a function of cut size, and their CCN activity was less influenced by chemical composition. This study provided a significant contribution towards a comprehensive understanding of sea-salt CCN activity.