Abstract The Hindu Kush Himalayan region is extremely susceptible to periodic monsoon floods. Early warning systems with the ability to predict floods in advance can benefit tens of millions of people living in the region. Two web-based flood forecasting tools (ECMWF-SPT and HIWAT-SPT) are therefore developed and deployed jointly by SERVIR-HKH and NASA-AST to provide early warning to Bangladesh, Bhutan, and Nepal. ECMWF-SPT provides ensemble forecast up to 15-day lead time, whereas HIWAT-SPT provides deterministic forecast up to 3-day lead time covering almost 100% of the rivers. Hydrological models in conjunction with forecast validation contribute not only to advancing the processes of a forecasting system, but also objectively assess the joint distribution of forecasts and observations in quantifying forecast accuracy. The validation of forecast products has emerged as a priority need to evaluate the worth of the predictive information in terms of quality and consistency. This paper describes the effort made in developing the hydrological forecast systems, the current state of the flood forecast services, and the performance of the forecast evaluation. Both tools are validated using a selection of appropriate metrics in measurement in both probabilistic and deterministic space. The numerical metrics are further complemented by graphical representations of scores and probabilities. It was found that the models had a good performance in capturing high flood events. The evaluation across multiple locations indicates that the model performance and forecast goodness are variable on spatiotemporal scale. The resulting information is used to support good decision-making in risk and resource management.
Glacial Lake Outburst Flood (GLOF) is an inherent threat in countries in the Hindu Kush Himalayan (HKH) region and is projected to increase in the face of climate change. One of the recent GLOF events in the region was the outburst of Lemthang Tsho (lake) in Bhutan on 28 July 2015. This paper discusses the cause and impact of the event based on the analysis of multi-temporal satellite images and field observation. The event, which was small to medium in volume, was triggered by the emptying of two supraglacial ponds located upstream of Lemthang Tsho. The area had experienced heavy rainfall till the morning of 28 July. On the same day, at 7:10 am local Bhutan time, a 5.1 magnitude earthquake struck about 177 km southeast of the lake. In the absence of firsthand information from the field, it cannot be confirmed that these two events triggered the lake outburst that took place around 3 pm. However, the possibility cannot be ruled out, either. The rainfall and earthquake are likely to have had a role in triggering the outburst.
Glacierized change in the Himalayas affects river‐discharge, hydro‐energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present‐day mean values, almost 10% of Bhutan's glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1°C regional warming, glacier retreat is going to continue until about 25% of Bhutan's glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%.
The Hindu Kush Himalayan (HKH) region being seismically active and sensitive to climate change is prone to glacial lake outburst flood (GLOF). The Lemthang Tsho GLOF breached in the evening of 28 July 2015 innorth-western Bhutan is reminds of the looming threat, and stresses the need to have good risk management plan. The need to understand the physical processes in generating GLOF to is therefore imperative in order to effectively manage the associated risk. The paper therefore assesses the cause and impact of the Lemthang Tsho GLOF event using field and remote sensing data. The collapse of near vertical wall of supraglacial lake triggered by 2 days of incessant rainfall, opened up the englacial conduit resulting in emptying of interconnected supraglacial lakes into Lemthang Tsho. The5.1 magnitude earthquake epicentered 187 km to southeast in the Indian state of Assam in the morning (7:10 am Bhutan Standard Time) of the same day is unlikely to have played any role in triggering the event. The estimated volume of water unleased is 0.37 million m3, with peak discharge estimated to be ranging from 1253 to 1562 m3/s, and velocity of 7.14–7.57 m/s. The impact was minimal and confined up to 30 km downstream from the lake. The flood took lives of 4 horses, washed away 4 timber cantilever bridges, 148 pieces of timber, damaged 1 acre of land, and washed away 1 km of trail. The team also monitored 3 out of 25 identified critical glacial lakes and downgraded the risk of all 3 critical glacial lakes based on the finding. This brings the number of critical glacial lakes in Bhutan to 22. The threat of GLOF still looms large in the Himalaya, particularly in view of impact of climate change and frequent seismic activities. There is a need for good risk management practices which starts fromidentification of critical glacial lakes, to prioritize in-depth investigation. As the present list of critical glacial lakes are largely based on inventory done over a decade based on topographic maps some of which datedback to 1960s, we need to revisit the critical glacial lakes and assess the risk considering recent changes. The new assessment needs to consider supraglacial lakes as one of the criteria in evaluating the GLOF risk, as highlighted by the Lemthang Tsho GLOF.