The high concentrations of Cl and ClO over Antarctica during the austral spring is now well known to be due to the catalytic cycle for the destruction of ozone for which these species are participants. The equilibrium structures, vibrational spectra, and heats of formation for CH{sub 3}OCl and CH{sub 3}ClO have been estimated using high levels of ab initio molecular orbital theory. The lowest energy isomer is found to be CH{sub 3}OCl, and its heat of formation is estimated to be {minus}13.5 {+-} 2 kcal mol{sup {minus}1}, in good agreement with bond additivity estimates. Results for the CH{sub 3}ClO isomer are presented for the first time, and it is found to be 40.5 kcal mol{sup {minus}1} higher in energy relative to CH{sub 3}OCl.
The HOCO radical has a ground (X 2A′) and two lowest A″2 excited states that are located using the CCSD(T) level of theory with the cc-pVDZ and cc-pVTZ basis sets. The harmonic frequencies are calculated at the CCSD(T) level of theory with the cc-pVDZ basis set. The vertical excitation energies for the 2 2A′, 3 2A′, 1 2A″, and 2 2A″ states of HOCO are obtained at the MRCI level of theory with the cc-pVTZ and aug-cc-pVTZ basis sets. The first excited state (1 2A″) is calculated to be 70.7 kcal mol−1 above the ground state for trans-HOCO. Comparisons are made between the excited states of HOCO and HCO. It is demonstrated that the HOCO states are not similar to those of HCO.
Methylamine is an abundant amine compound detected in the atmosphere which can affect the nature of atmospheric aerosol surfaces, changing their chemical and optical properties. Molecular dynamics simulation results show that methylamine accommodation on water is close to unity with the hydrophilic head group solvated in the interfacial environment and the methyl group pointing into the air phase. A detailed analysis of the hydrogen bond network indicates stronger hydrogen bonds between water and the primary amine group at the interface, suggesting that atmospheric trace gases will likely react with the methyl group instead of the solvated amine site. These findings suggest new chemical pathways for methylamine acting on atmospheric aerosols in which the methyl group is the site of orientation specific chemistry involving its conversion into a carbonyl site providing hydrophilic groups for uptake of additional water. This conversion may explain the tendency of aged organic aerosols to form cloud condensation nuclei. At the same time, formation of NH2 radical and formaldehyde is suggested to be a new source for NH2 radicals at aerosol surfaces, other than by reaction of absorbed NH3. The results have general implications for the chemistry of other amphiphilic organics, amines in particular, at the surface of atmospherically relevant aerosols.
Reaction pathways for the decomposition of trifluoroacetic acid, CF3C(O)OH, on the ground-state potential-energy surface have been studied by means of ab initio methods. Heats of reaction and barrier heights have been computed for molecular and free-radical dissociation pathways. The two lowest energy reaction pathways to dissociation of trifluoroacetic acid are the molecular elimination of CF2 to form FC(O)OH, and carbon–carbon bond fission to form CF3 radicals and the C(O)OH radical.
A new aluminum-bearing species, OAlNO, which has the potential to impact the chemistry of the Earth's upper atmosphere, is characterized via high-level, ab initio, spectroscopic methods. Meteor-ablated aluminum atoms are quickly oxidized to aluminum oxide (AlO) in the mesosphere and lower thermosphere (MLT), where a steady-state layer of AlO then builds up. Concurrent formation of nitric oxide (NO) in the same region of the atmosphere will lead to the bimolecular formation of the OAlNO molecule. Molecular orbital analysis provides fundamental insights into the chemical bonding and energetic arrangement of the triplet (1 3A″) ground state and singlet (1 1A') excited-state species of OAlNO. Additionally, unpaired electrons on the terminal oxygen atom of triplet (1 3A″) OAlNO cause it to be reactive to atmospheric species, potentially impacting climate science and high-altitude chemistry. The triplet (1 3A″) ground-state species exhibits a large permanent dipole moment useful for rotational spectroscopic detection; however, similar rotational constants to the singlet (1 1A') excited-state species will hamper differentiation in a spectrum. Strong infrared intensities will assist in detection and discrimination of the different spin states and isomers. Repulsive electronic excited states of OAlNO will lead to photolysis of the Al-N bond and formation of various electronic states of AlO + NO through nonadiabatic pathways. Reaction through the OAlNO intermediate represents a means for the production of electronically excited AlO, leading to new chemistry in the atmosphere. Excitation to higher-lying electronic states will lead to fluorescence with a minor Stokes shift, useful for laboratory investigation. Such physical properties of this molecule will allow for new, unexplored chemical pathways in the MLT to be considered.
A joint theoretical and experimental investigation is undertaken to study the effects of OH-stretch/HOON torsion coupling and of quantum yield on the previously reported first overtone action spectrum of cis-cis HOONO (peroxynitrous acid). The minimum energy path along the HOON dihedral angle is computed at the coupled cluster singles and doubles with perturbative triples level with correlation consistent polarized quadruple zeta basis set, at the structure optimized using the triple zeta basis set (CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ). The two-dimensional ab initio potential energy and dipole moment surfaces for cis-cis HOONO are calculated as functions of the HOON torsion and OH bond length about the minimum energy path at the CCSD(T)/cc-pVTZ and QCISD/AUG-cc-pVTZ (QCISD-quadratic configuration interaction with single and double excitation and AUG-augmented with diffuse functions) level of theory/basis, respectively. The OH-stretch vibration depends strongly on the torsional angle, and the torsional potential possesses a broad shelf at approximately 90 degrees , the cis-perp conformation. The calculated electronic energies and dipoles are fit to simple functional forms and absorption spectra in the region of the OH fundamental and first overtone are calculated from these surfaces. While the experimental and calculated spectra of the OH fundamental band are in good agreement, significant differences in the intensity patterns are observed between the calculated absorption spectrum and the measured action spectrum in the 2nu(OH) region. These differences are attributed to the fact that several of the experimentally accessible states do not have sufficient energy to dissociate to OH+NO(2) and therefore are not detectable in an action spectrum. Scaling of the intensities of transitions to these states, assuming D(0)=82.0 kJ/mol, is shown to produce a spectrum that is in good agreement with the measured action spectrum. Based on this agreement, we assign two of the features in the spectrum to Deltan=0 transitions (where n is the HOON torsion quantum number) that are blue shifted relative to the origin band, while the large peak near 7000 cm(-1) is assigned to a series of Deltan=+1 transitions, with predominant contributions from torsionally excited states with substantial cis-perp character. The direct absorption spectrum of cis-cis HOONO (6300-6850 cm(-1)) is recorded by cavity ringdown spectroscopy in a discharge flow cell. A single band of HOONO is observed at 6370 cm(-1) and is assigned as the origin of the first OH overtone of cis-cis HOONO. These results imply that the origin band is suppressed by over an order of magnitude in the action spectrum, due to a reduced quantum yield. The striking differences between absorption and action spectra are correctly predicted by the calculations.
The oxywater cation (H2OO+), previously shown to form barrierlessly in the gas phase from water cations and atomic oxygen, is proposed here potentially to possess a 2A″ ←4A″ excitation leading to the H2⋯O2+ complex. This complex could then easily decompose into molecular hydrogen and the molecular oxygen cation. The present quantum chemical study shows that the necessary electronic transition takes place in the range of 1.92 eV (645 nm), in the orange-red range of the visible and solar spectrum, and dissociation of the complex only requires 5.8 kcal/mol (0.25 eV). Such a process for the abiotic, gas phase formation of O2 would only need to be photocatalyzed by visible wavelength photons. Hence, such a process could produce O2 at the mesosphere/stratosphere boundary as climate change is driving more water into the upper atmosphere, in the comet 67P/Churyumov-Gerasimenko where surprisingly high levels of O2 have been observed, or at gas-surface (ice) interfaces.
Computational results suggest that the reactions ofantisubstituted Criegee intermediates with amine could lead to oligomers, which may play an important role in new particle formation and hydroxyl radical generation in the troposphere.