Abstract. Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913–2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency analysis using documentary data (plus gauged records) improved the estimates of the probabilities of rare floods (return intervals of 100 yr and higher). Under non-stationary modelling flood occurrence associated with an exceedance probability of 0.01 (i.e. return period of 100 yr) has changed over the last 500 yr due to decadal and multi-decadal variability of the NAO. Yet, frequency analysis under stationary models was successful in providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.
A new approach to describing the associated topography at different scales in computational fluid dynamic applications to gravel bed rivers was developed. Surveyed topographic data were interpolated, using geostatistical methods, into different spatial discretizations, and grain‐size data were used with fractal methods to reconstruct the microtopography at scales finer than the measurement (subgrid) scale. The combination of both scales of topography was then used to construct the spatial discretization of a three‐dimensional finite volume Computational Fluid Dynamics (CFD) scheme where the topography was included using a mass flux scaling approach. The method was applied and tested on a 15 m stretch of Solfatara Creek, Wyoming, United States, using spatially distributed elevation and grain‐size data. Model runs were undertaken for each topography using a steady state solution. This paper evaluates the impact of the model spatial discretization and additional reconstructed‐variability upon the spatial structure of predicted three‐dimensional flow. The paper shows how microtopography modifies the spatial structure of predicted flow at scales finer than measurement scale in terms of variability whereas the characteristic scale of predicted flow is determined by the CFD scale. Changes in microtopography modify the predicted mean velocity value by 3.6% for a mesh resolution of 5 cm whereas a change in the computational scale modifies model results by 60%. The paper also points out how the spatial variability of predicted velocities is determined by the topographic complexity at different scales of the input topographic model.
Southern Judean Desert, Israel. To extend the flood record in two basins in the Judean Desert for facilitating the quality and reliability of the flood frequency analysis (FFA). The hydrological data for The Judean Desert streams is partial to none. This study applied palaeoflood hydrology method, which analyzes sedimentological evidence of past large floods in two streams. One basin (N. Ze'elim, 250 km2) yield maximum palaeo-discharge of 900 m3s−1 and the other (N. Rahaf, 55 km2) 1250 m3s−1 (1.3 and 2.3 times larger than the maximum measured floods, respectively), for records of 500 and 5000 years, respectively. Combining these data with measured and historical data produced a palaeo-hydrological data-base of several hundred to thousands years long. These data updated the regional envelope curves for the maximum peak discharges. The improved FFA caused a decrease for the 100-year flood in the larger basin, from 1750 m3s−1, for the systematic record only, to 760 m3s−1 (43 %) for the combined records, and from 1260 m3s−1 to 980 m3s−1, in the other basin (77 %). The FFA for the systematic + historic data only, overestimated the frequency of the large floods due to their short and discontinuous records. The extension of the record with the palaeoflood data reduced the peak discharge values for different return periods and significantly enhanced FFA reliability.