Previous work suggests domestic poultry are important contributors to the emergence and transmission of highly pathogenic avian influenza throughout Asia. In Poyang Lake, China, domestic duck production cycles are synchronized with arrival and departure of thousands of migratory wild birds in the area. During these periods, high densities of juvenile domestic ducks are in close proximity to migratory wild ducks, increasing the potential for the virus to be transmitted and subsequently disseminated via migration. In this paper, we use GPS dataloggers and dynamic Brownian bridge models to describe movements and habitat use of free-grazing domestic ducks in the Poyang Lake basin and identify specific areas that may have the highest risk of H5N1 transmission between domestic and wild birds. Specifically, we determine relative use by free-grazing domestic ducks of natural wetlands, which are the most heavily used areas by migratory wild ducks, and of rice paddies, which provide habitat for resident wild ducks and lower densities of migratory wild ducks. To our knowledge, this is the first movement study on domestic ducks, and our data show potential for free-grazing domestic ducks from farms located near natural wetlands to come in contact with wild waterfowl, thereby increasing the risk for disease transmission. This study provides an example of the importance of movement ecology studies in understanding dynamics such as disease transmission on a complicated landscape.
Abstract Previous research indicates that the effects of climate warming, including shrub expansion and increased fire frequency may lead to declining lichen abundance in arctic tundra and northern alpine areas. Lichens are important forage for caribou ( Rangifer tarandus ), whose populations are declining throughout most of North America. To clarify how lichen cover might affect caribou resource selection, ecologists require better data on the spatial distribution and abundance of lichen. Here, we use a combination of field data and satellite imagery to model lichen cover for a 583 200 km 2 area that fully encompasses nine caribou ranges in interior Alaska and Yukon. We aggregated data from in situ vegetation plots, aerial survey polygons and unmanned aerial vehicle (UAV) imagery to align with 30 m resolution Landsat pixels. We used these data to train a random forest model with a suite of environmental and spectral predictors to estimate lichen cover. We validated our lichen cover model using reserved training data and existing external datasets, and found that reserved data from aerial survey polygons ( R 2 = 0.77) and UAV imagery ( R 2 = 0.71) provided the best fit. We used our lichen cover map to evaluate the influence of estimated lichen cover on caribou resource selection in the Fortymile Herd from 2012 to 2018 during summer and winter. In both seasons, caribou avoided lichen-poor areas (0%–5% lichen cover) and showed stronger selection as lichen cover increased to ∼30%, above which selection leveled off. Our results suggest that terrestrial lichen cover is an important factor influencing caribou resource selection in northern boreal forests across seasons. Our lichen cover map goes beyond existing maps of lichen abundance and distribution because it incorporates extensive field data for model training and validation and estimates lichen cover over a much larger spatial extent. We expect our landscape-scale map will be useful for understanding trends in lichen abundance and distribution, as well as for caribou research, management and conservation.
Abstract Widespread changes in the distribution and abundance of plant functional types (PFTs) are occurring in Arctic and boreal ecosystems due to the intensification of disturbances, such as fire, and climate-driven vegetation dynamics, such as tundra shrub expansion. To understand how these changes affect boreal and tundra ecosystems, we need to first quantify change for multiple PFTs across recent years. While landscape patches are generally composed of a mixture of PFTs, most previous moderate resolution (30 m) remote sensing analyses have mapped vegetation distribution and change within land cover categories that are based on the dominant PFT; or else the continuous distribution of one or a few PFTs, but for a single point in time. Here we map a 35 year time-series (1985–2020) of top cover (TC) for seven PFTs across a 1.77 × 10 6 km 2 study area in northern and central Alaska and northwestern Canada. We improve on previous methods of detecting vegetation change by modeling TC, a continuous measure of plant abundance. The PFTs collectively include all vascular plants within the study area as well as light macrolichens, a nonvascular class of high importance to caribou management. We identified net increases in deciduous shrubs (66 × 10 3 km 2 ), evergreen shrubs (20 × 10 3 km 2 ), broadleaf trees (17 × 10 3 km 2 ), and conifer trees (16 × 10 3 km 2 ), and net decreases in graminoids (−40 × 10 3 km 2 ) and light macrolichens (−13 × 10 3 km 2 ) over the full map area, with similar patterns across Arctic, oroarctic, and boreal bioclimatic zones. Model performance was assessed using spatially blocked, nested five-fold cross-validation with overall root mean square errors ranging from 8.3% to 19.0%. Most net change occurred as succession or plant expansion within areas undisturbed by recent fire, though PFT TC change also clearly resulted from fire disturbance. These maps have important applications for assessment of surface energy budgets, permafrost changes, nutrient cycling, and wildlife management and movement analysis.
Abstract Wolverine distribution contracted along the southern periphery of its range in North America during the 19th and 20th centuries due primarily to human influences. This history, along with low densities, sensitivity to climate change, and concerns about connectivity among fragmented habitats spurred the recent US federal listing of threatened status and special concern status in Canada. To help inform large scale landscape connectivity, we collected 882 genetic samples genotyped at 19 microsatellite loci. We employed multiple statistical models to assess the landscape factors (terrain complexity, human disturbance, forest configuration, and climate) associated with wolverine genetic connectivity across 2.2 million km 2 of southwestern Canada and the northwestern contiguous United States. Genetic similarity (positive spatial autocorrelation) of wolverines was detected up to 555 km and a high-to-low gradient of genetic diversity occurred from north-to-south. Landscape genetics analyses confirmed that wolverine genetic connectivity has been negatively influenced by human disturbance at broad scales and positively influenced by forest cover and snow persistence at fine- and broad–scales, respectively. This information applied across large landscapes can be used to guide management actions with the goal of maintaining or restoring population connectivity.
Abstract Context Species-agnostic connectivity models are often used to inform management over broad spatial scales. The four main approaches to species-agnostic models parameterize resistance to movement based on naturalness, structural features, climate, or geodiversity variables. Though all four of these factors simultaneously affect species movement and flow of ecological processes, they are rarely combined. Objectives We built upon an approach that uses all four of these factors to model current and future ecological connectivity for the Crown of the Continent Ecoregion, in Canada and the USA. Methods We estimated resistance for each pixel on the landscape based on multivariate ecological distances to surrounding pixels. We then modeled connectivity with resistant kernels at different scales, and dynamically in response to future climates from 2020 to 2080. Results Across the study area, we found median connectivity values decreased by 17–50% from 2020 to 2080 depending on the scale, with broader scales experiencing greater losses in connectivity. Though often considered natural conduits for movement, stream and valley bottoms generally lost connectivity through time. Wilderness areas had significantly higher connectivity values than unprotected lands for all time steps and scales, indicating their importance for maintaining future connectivity of ecological processes. Conclusions We offer an updated approach for species-agnostic connectivity modeling that combines naturalness, structural features, and topo-climatic layers while considering multiple scales of ecological processes over a large spatial extent and dynamism through time. This approach can be applied to other landscapes to produce products for short- and long-term management of connectivity and ecological resilience.